MARDY: Modeling Argumentation Dynamics in Political Discourse (Phase 2)
MARDY:政治话语中的争论动态建模(第二阶段)
基本信息
- 批准号:375875969
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This interdisciplinary collaboration project involving Computational Linguistics, Machine Learning and Political Science has the aim of developing computational models and methods for analyzing argumentation in political discourse - specifically capturing the dynamics of discursive exchanges on controversial issues over time. The goal is to support analysis of the possible impact of arguments advanced by different political actors. Here, factors besides the substance of the claim and its justification need to be considered: the development and structure of discourse coalitions, overlapping and competing use of justifications and frames, the status of and relations between actors, etc. Such factors are to be integrated into effective, scalable computational models which support both professional analysts (such as political scientists) and informed laypersons researching current and past debates. Our modeling approach combines state-of-the-art analysis methods from language technology with powerful machine learning techniques (in particular joint inference and deep learning) and analytical insights from political science to produce globally coherent discourse networks relating actors, claims, and justifications. We do so by solving the necessary computational component tasks of extracting the above factors from texts and combining them in more complex models. As part of model development, the project will create high-quality annotations (coding) for a corpus of past debates in German political discourse as covered in daily newspapers, capturing issue-related content of claims, argumentative structure and relevant discourse references. The annotated newspaper corpus will be made freely available for academic research. To complement empirical access to debates mediated through newspapers, we will use additional sources (available corpora of parliamentary proceedings) to access actors' original contributions and for semi-structured systematization of argumentative positions.By applying dynamic network models to datasets of real debates, retrospective predictive modeling experiments can be used to test hypotheses about empirically relevant factors driving political discourse and to learn how model parameters relate to specific elements of theoretical interpretation and/or to intuitions that expert analysts have developed through experience. Using interactive visualization techniques and diagnostic tools that we will develop alongside the modeling, (families of) predictive models applied on new data can contribute to the identification of unexpected turns in an ongoing debate, and to other schemes of explorative or systematic analysis of argumentation dynamics in political discourse. The close connection among the participating groups ensures that the computational models transfer into useful tools for political scientists, and we aim at establishing a "best-practice" methodology for this exchange over the course of the project.
这个跨学科的合作项目涉及计算语言学、机器学习和政治学,其目的是开发计算模型和方法来分析政治话语中的论证——特别是捕捉随时间推移的有争议问题的话语交流的动态。目的是支持对不同政治行为者提出的论点可能产生的影响进行分析。在这里,除了主张及其理由的实质之外,还需要考虑其他因素:话语联盟的发展和结构,理由和框架的重叠和竞争使用,行动者的地位和关系等。这些因素将被整合到有效的、可扩展的计算模型中,以支持专业分析师(如政治科学家)和知情的外行人研究当前和过去的辩论。我们的建模方法将语言技术的最先进的分析方法与强大的机器学习技术(特别是联合推理和深度学习)以及政治学的分析见解相结合,以产生与行动者、主张和理由相关的全球连贯的话语网络。我们通过解决从文本中提取上述因素并将其组合到更复杂的模型中的必要计算组件任务来实现这一点。作为模型开发的一部分,该项目将为德国政治话语中过去辩论的语料库创建高质量的注释(编码),这些语料库涵盖在日报上,捕获与主张、论证结构和相关话语参考的问题相关内容。经注释的报纸语料库将免费提供给学术研究。为了补充通过报纸媒介获得辩论的经验,我们将使用其他来源(可用的议会程序语料)来获取参与者的原始贡献,并对辩论立场进行半结构化的系统化。通过将动态网络模型应用于真实辩论的数据集,回顾性预测建模实验可用于测试有关驱动政治话语的经验相关因素的假设,并了解模型参数如何与理论解释的特定元素和/或专家分析师通过经验开发的直觉相关联。使用我们将与建模一起开发的交互式可视化技术和诊断工具,应用于新数据的预测模型(家族)可以有助于识别正在进行的辩论中的意外转折,以及对政治话语中的论证动态进行探索性或系统性分析的其他方案。参与小组之间的密切联系确保了计算模型转化为政治科学家的有用工具,我们的目标是在项目过程中为这种交流建立一种“最佳实践”方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Sebastian Haunss其他文献
Professor Dr. Sebastian Haunss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Modeling and Decoding Host-Microbiome Interactions in Gingival Tissue
职业:建模和解码牙龈组织中宿主-微生物组的相互作用
- 批准号:
2337322 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
- 批准号:
2338621 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
- 批准号:
2346964 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
- 批准号:
2340882 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant