Functional Imaging of Osteocyte Autophagy, Senescence and Apoptosis in Human Bone

人骨中骨细胞自噬、衰老和凋亡的功能成像

基本信息

项目摘要

Bone is a dynamic living tissue with a highly porous mineralized extracellular matrix housing a widespread cellular network of dendritic osteocytes. Osteocytes are connected to surface cells, namely bone forming osteoblasts and bone resorbing osteoclasts. It is well established that during adult life the bone matrix is turned over by a timely and locally coordinated action of osteoclasts and osteoblasts to maintain bone functionality. Therefore, it is not surprising that in situations of unbalanced bone turnover e.g. the highly prevalent age related bone loss (osteoporosis), pharmaceutical therapies focus on osteoclast and osteoblast activities. These therapies can improve bone mineral density and reduce fracture incidences, yet none of them is able to cure the underlying disease, suggesting additional factors are essential for the loss of bone functionality.It is the hypothesis of this proposal that osteocytes have a crucial role in the local regulation of bone remodeling and that the osteocyte viability is a determining factor. Osteocyte longevity is one of the most striking feature of this cell type. Osteocytes are considered to be one of the longest living cells in the human body and their cell viability is highly influenced by external stressors experienced within their osteocyte network. However, it is the embeddedness of osteocytes in the mineralized bone matrix that creates a challenging situation to functionally visualize this cell type. This project will use advanced functional imaging of the osteocyte to investigate the cellular life cycle by means of i) apoptosis as cell death mechanism, ii) autophagy as survival strategy, and iii) senescence as an aging process and the status in the cell cycle. Furthermore, osteocyte viability will be linked locally to bone turnover activities by osteoblasts and osteoclasts as determined by histomorphometry. This will create a novel mechanistic map connecting the osteocyte life cycle to bone turnover. To enable clinical relevance, human bone samples from young adults and aged adults with unbalanced bone turnover will be used for the investigation. Our work and the work of others demonstrated the vital importance of osteocyte viability by showing that osteocytes appear superior in maintaining their cell viability. With the recent research advancements demonstrating the multifunctionality of osteocytes, the death of osteocytes is a hallmark of bone diseases with unbalanced bone turnover. Against this background, this project will unravel the link between the life cycle of osteocytes and the local activities of osteoblasts and osteoclasts during bone turnover in human bone. Investigating this link will generate a novel mechanistic understanding that can aid to optimize future treatment regimens for bone diseases.
骨是一种动态的活组织,具有高度多孔的矿化细胞外基质,其中容纳了广泛分布的树突状骨细胞的细胞网络。骨细胞连接到表面细胞,即骨形成成骨细胞和骨再吸收破骨细胞。众所周知,在成年期,破骨细胞和成骨细胞的及时和局部协调作用使骨基质翻转,以维持骨功能。因此,在骨转换不平衡的情况下,例如高度流行的年龄相关的骨丢失(骨质疏松症),药物治疗集中于破骨细胞和成骨细胞活性,这并不奇怪。这些治疗方法可以改善骨密度和降低骨折发生率,但它们都不能治愈潜在的疾病,这表明其他因素是必不可少的骨功能的损失。这是这个建议的假设,骨细胞在骨重建的局部调节中起着至关重要的作用,骨细胞的活力是一个决定性因素。骨细胞的寿命是这种细胞类型最显著的特征之一。骨细胞被认为是人体中存活时间最长的细胞之一,其细胞活力受到其骨细胞网络内经历的外部应激源的高度影响。然而,正是骨细胞在矿化骨基质中的嵌入性造成了功能性可视化这种细胞类型的挑战性情况。本项目将使用先进的骨细胞功能成像技术,通过i)细胞凋亡作为细胞死亡机制,ii)自噬作为生存策略,iii)衰老作为衰老过程和细胞周期中的状态来研究细胞生命周期。此外,骨细胞活力将与成骨细胞和破骨细胞的骨转换活性局部相关,如通过组织形态计量学确定的。这将创建一个新的机制地图连接骨细胞的生命周期骨周转。为了实现临床相关性,将使用来自骨转换不平衡的年轻人和老年人的人骨样本进行研究。我们的工作和其他人的工作通过显示骨细胞在维持其细胞活力方面表现出上级,证明了骨细胞活力的至关重要性。随着骨细胞多功能性的研究进展,骨细胞的死亡已成为骨转换不平衡性骨病的标志。在此背景下,该项目将揭示骨细胞的生命周期与人骨中骨转换过程中成骨细胞和破骨细胞的局部活动之间的联系。研究这种联系将产生一种新的机制理解,可以帮助优化未来的骨骼疾病治疗方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozentin Dr. Katharina Jähn-Rickert, Ph.D.其他文献

Privatdozentin Dr. Katharina Jähn-Rickert, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozentin Dr. Katharina Jähn-Rickert, Ph.D.', 18)}}的其他基金

The role of osteocytes in bone regeneration using a murine calvarial defect model
使用小鼠颅骨缺损模型研究骨细胞在骨再生中的作用
  • 批准号:
    505869592
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

非小细胞肺癌Biomarker的Imaging MS研究新方法
  • 批准号:
    30672394
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    NE/X000656/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Research Grant
NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    NE/Z000254/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
  • 批准号:
    LE240100091
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Novel chelators for Scandium-44 in PET imaging of prostate cancer
用于前列腺癌 PET 成像的新型 Scandium-44 螯合剂
  • 批准号:
    2904564
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
MagTEM2 - the next generation microscope for imaging functional materials
MagTEM2 - 用于功能材料成像的下一代显微镜
  • 批准号:
    EP/Z531078/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
  • 批准号:
    2347575
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
  • 批准号:
    2342833
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了