Answering Causal Queries about Singular Cases

回答有关奇异案例的因果查询

基本信息

项目摘要

Causal reasoning is one of our most central cognitive competencies, which has attracted a substantial amount of research in the past decades. The main focus of this research has been on modelling judgments about general causal relations. For example, an indicator of a general causal relation between smoking and lung disease might be the finding that in a sample of people smokers tend to contract lung disease with a higher probability than non-smokers. However, there is a second class of judgments, judgments about singular causation, that have so far been largely neglected in the psychological literature. For example, when observing a specific smoker having contracted lung disease, the question can be raised whether this person's smoking is the cause of her lung disease, or whether the co-occurrence of the events is just a coincidence. Queries about singular causation are prevalent in everyday and professional contexts, such as the law or medicine. So far, singular causation has mainly been studied by philosophers who in most cases have restricted their focus on deterministic causal relations. By contrast, our goal is to study the more prevalent case of probabilistic causal relations, which raises the question how people distinguish singular causation from coincidence and from general causation. The project is subdivided into three parts: Project 1 focuses on elemental singular causal judgments with a single cause and a single effect. We will test a new Bayesian computational model, the structure induction model of singular causation (SISC), which we have recently developed to model responses to singular causation queries. The model assumes that people draw on their general causal knowledge when assessing singular causation queries. Moreover, it formalizes the assumption that people assess the likelihood that the cause has generated its effect given that both events have been observed to be present. Finally, the model assumes that people take into account uncertainty about the size of the causal model parameters and about the hypothesized causal structure. Project 1 tests whether people differentiate between general and singular causation judgments in a way predicted by SISC. Moreover, SISC will be tested against possible competitors. In Project 2 we study an extension of the basic model to account for mechanism knowledge, which has proven important in judgments about singular causation. Finally, Project 3 focuses on cases in which the reference class underlying the general causal relations can be flexibly chosen. The project addresses the question which reference class people choose when making judgments about general and singular causal relations. Additionally, we will investigate whether pragmatic factors influence how general versus singular causation queries are processed.
因果推理是我们最核心的认知能力之一,在过去的几十年里吸引了大量的研究。这项研究的主要重点是对一般因果关系的建模判断。例如,吸烟和肺病之间一般因果关系的一个指标可能是发现在一个样本中,吸烟者往往比非吸烟者更有可能患上肺病。然而,还有第二类判断,关于单一因果关系的判断,迄今为止在心理学文献中基本上被忽视了。例如,当观察到一个特定的吸烟者患有肺部疾病时,可以提出这样的问题:这个人的吸烟是否是她肺部疾病的原因,或者这些事件的同时发生是否只是巧合。关于单一因果关系的争论在日常和专业背景中很普遍,比如法律或医学。到目前为止,奇异因果关系主要是由哲学家研究的,他们在大多数情况下都将注意力集中在确定性因果关系上。相比之下,我们的目标是研究概率因果关系的更普遍的情况下,这提出了一个问题,人们如何区分单一的因果关系从巧合和一般的因果关系。该项目被细分为三个部分:项目1侧重于一个单一的原因和一个单一的影响元素单一的因果判断。我们将测试一个新的贝叶斯计算模型,奇异因果关系的结构归纳模型(SISC),我们最近开发的模型响应奇异因果关系查询。该模型假设人们在评估奇异因果关系查询时利用他们的一般因果知识。此外,它形式化的假设,人们评估的可能性,原因已经产生了它的影响,因为这两个事件已被观察到存在。最后,该模型假设人们考虑到因果模型参数的大小和假设的因果结构的不确定性。项目1测试人们是否能以SISC预测的方式区分一般和单一因果关系判断。此外,SISC将与可能的竞争对手进行测试。在项目2中,我们研究了扩展的基本模型,占机制知识,这已被证明是重要的奇异因果关系的判断。最后,项目3侧重于可以灵活选择一般因果关系的参考类的情况。该项目解决了人们在判断一般和奇异因果关系时选择哪种参考类的问题。此外,我们将调查是否语用因素影响一般与奇异因果关系查询处理。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Preemption in Singular Causation Judgments: A Computational Model
单一因果判断中的先发制人:一个计算模型
  • DOI:
    10.1111/tops.12309
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Stephan;Waldmann
  • 通讯作者:
    Waldmann
Time and Singular Causation - A Computational Model
时间和奇异因果关系 - 计算模型
  • DOI:
    10.1111/cogs.12871
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Stephan;Mayrhofer;Waldmann
  • 通讯作者:
    Waldmann
Interpolating causal mechanisms: The paradox of knowing more.
插入因果机制:了解更多的悖论
The role of mechanism knowledge in singular causation judgments
机制知识在单一因果判断中的作用
  • DOI:
    10.1016/j.cognition.2021.104924
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Stephan;Waldmann
  • 通讯作者:
    Waldmann
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael R. Waldmann其他文献

Professor Dr. Michael R. Waldmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael R. Waldmann', 18)}}的其他基金

The psychology of moral dilemmas
道德困境的心理学
  • 批准号:
    167159114
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Kausale Bayes-Netze als psychologische Theorien kausalen Denkens
因果贝叶斯网络作为因果思维的心理学理论
  • 批准号:
    14638915
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Kategorisierung und induktives Lernen
分类和归纳学习
  • 批准号:
    5372750
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mechanisms, Capacities, and Dependencies: A New Theory of Causal Reasoning
机制、能力和依赖性:因果推理的新理论
  • 批准号:
    491624043
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Reinhart Koselleck Projects

相似海外基金

CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
  • 批准号:
    2339774
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Causal Modeling for Data Quality and Bias Mitigation
职业:数据质量和偏差缓解的因果建模
  • 批准号:
    2340124
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Complex Causal Moderated Mediation Analysis in Multisite Randomized Trials: Uncovering the Black Box Underlying the Impact of Educational Interventions on Math Performance
职业:多地点随机试验中的复杂因果调节中介分析:揭示教育干预对数学成绩影响的黑匣子
  • 批准号:
    2337612
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Causal contributions of deep prefrontal-amygdala circuits to social cognition
深层前额叶杏仁核回路对社会认知的因果贡献
  • 批准号:
    MR/Y010477/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Causal relationship between taste and smell perception and eating behaviour
味觉和嗅觉与饮食行为之间的因果关系
  • 批准号:
    DE240100014
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Evaluating and addressing the impact of COVID-19 restrictions on electronic health records in estimating causal effects
评估和解决 COVID-19 限制对电子健康记录的影响,以估计因果影响
  • 批准号:
    MR/Z503769/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
  • 批准号:
    2337529
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Identifying causal pathways in cerebral small vessel disease
确定脑小血管疾病的因果途径
  • 批准号:
    MR/Y014634/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
SaTC: CORE: Medium: Testing the causal influence of social media on well-being and animosity
SaTC:核心:中:测试社交媒体对幸福感和敌意的因果影响
  • 批准号:
    2334148
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: Knowledge Graph-powered Information Retrieval and Causal Inference
SBIR 第一阶段:知识图谱驱动的信息检索和因果推理
  • 批准号:
    2335357
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了