Direct and inverse spin orbit torques
正向和反向自旋轨道力矩
基本信息
- 批准号:387161541
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The field of spintronics aims to exploit the interaction of electronic spin and charge degrees of freedom for future information technology. This interaction can be enabled by spin-orbit torques such that a charge current can be used to generate spin dynamics and vice versa. This principle has tremendous appeal for applications as it promises compatibility with conventional electronics while adding new functionality by incorporating the spin degree of freedom. However, the microscopic processes causing spin-orbit torques are not well understood to date, making it difficult to tune the efficiency or even predict the qualitative behavior of practical devices based on this scheme. This project aims to gain insight into the physical concepts of spin-orbit torques and to identify promising material combinations and new concepts for spintronics. The experimental studies will be carried out using ultrathin magnetic films in contact with nonmagnetic metallic materials with high spin orbit interaction. Micro- and nanopatterned devices with metallic or insulating magnetic constituents will be used. Due to the inherent symmetry breaking at the interface of the ferromagnet and the normal metal, charge currents can be used to exert spin-orbit torques on the magnetic moments in such systems. Moreover, a nontrivial spatial ordering of the magnetic moments in the ferromagnet can ensue due to the interfacial antisymmetric exchange interaction, which favors a canted alignment of neighboring spins. A special kind of chiral magnetic ordering, known as a Skyrmion, is thereby of particular fundamental and technological interest, as Skyrmions should permit a particularly efficient manipulation via current-induced spin-orbit torques. In this project, spin-orbitronic interactions, i.e., the action of charge currents on the spin dynamics, and the respective inverse effects, will be experimentally studied in the GHz-frequency range. Thereby, inductive and optical techniques that are capable of resolving magnetic excitations at the micro- and nanoscale will be exploited to sense the magnetodynamics. The obtained results will have direct consequences for the practical realization of spintronic devices, which require small structure size and GHz-frequency operation. Finally, the studied spin-orbit and exchange interactions are amongst the most profound mechanisms in magnetism, such that the gained insights will have a fundamental impact far beyond the field of spintronics.
自旋电子学领域的目标是利用电子自旋和电荷自由度的相互作用为未来的信息技术。这种相互作用可以通过自旋-轨道转矩来实现,使得充电电流可以用于产生自旋动力学,反之亦然。该原理对应用具有巨大的吸引力,因为它承诺与传统电子器件兼容,同时通过引入自旋自由度来添加新功能。然而,导致自旋轨道扭矩的微观过程至今还没有得到很好的理解,这使得难以调整效率,甚至难以预测基于该方案的实际设备的定性行为。该项目旨在深入了解自旋轨道扭矩的物理概念,并确定有前途的材料组合和自旋电子学的新概念。实验研究将使用与具有高自旋轨道相互作用的非磁性金属材料接触的非磁性薄膜进行。将使用具有金属或绝缘磁性成分的微米和纳米图案化装置。由于铁磁体和正常金属的界面处固有的对称性破缺,电荷电流可以被用来在这样的系统中对磁矩施加自旋轨道转矩。此外,由于界面反对称交换相互作用,铁磁体中磁矩的非平凡空间有序性可以随之发生,这有利于相邻自旋的倾斜排列。因此,一种特殊的手性磁有序,称为Skyrmion,具有特别的基础和技术意义,因为Skyrmion应该允许通过电流诱导的自旋轨道转矩进行特别有效的操纵。在这个项目中,自旋轨道相互作用,即,将在GHz频率范围内对电荷电流对自旋动力学的作用以及相应的逆效应进行实验研究。因此,感应和光学技术,能够解决在微米和纳米级的磁激发将被利用来感测的磁动力学。所获得的结果将有直接的后果,实际实现的自旋电子器件,这需要小的结构尺寸和GHz频率的操作。最后,所研究的自旋轨道和交换相互作用是磁学中最深刻的机制之一,因此所获得的见解将产生远远超出自旋电子学领域的根本影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Mathias Weiler其他文献
Professor Dr. Mathias Weiler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Mathias Weiler', 18)}}的其他基金
Spin dynamics of hybrid skyrmion-magnon solitons
混合斯格明子-磁振子孤子的自旋动力学
- 批准号:
403505631 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
新型简化Inverse Lax-Wendroff方法的发展与应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
- 批准号:11801143
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Spin-orbit-torque in inverse Heusler alloy films
反赫斯勒合金薄膜中的自旋轨道扭矩
- 批准号:
20K05296 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Thermal stability and scaling of nanoscale spin-electronic devices based on novel inverse-Heusler alloys
职业:基于新型逆赫斯勒合金的纳米级自旋电子器件的热稳定性和缩放
- 批准号:
1846829 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Slow-photon effects in inverse-opal TiO2 photocatalysis: evaluation by electron spin resonance spectroscopy
反蛋白石 TiO2 光催化中的慢光子效应:电子自旋共振光谱评估
- 批准号:
17K06018 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantifying Spin-Orbit Coupling in Rare-Earth Metals via Inverse Spin Hall Effect
通过逆自旋霍尔效应量化稀土金属中的自旋轨道耦合
- 批准号:
1507274 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
A comprehensive study of learning, inference, and inverse problems based on the spin-glass theory
基于自旋玻璃理论的学习、推理和逆问题的综合研究
- 批准号:
26870185 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Detection of pure spin current in topological insultors by using the inverse spin Hall effect
利用逆自旋霍尔效应检测拓扑绝缘体中的纯自旋电流
- 批准号:
25600076 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Spin responses of unstable exotic nuclei studied by exothermic charge-exchange reactions in inverse-kinematics
通过逆运动学中的放热电荷交换反应研究不稳定奇异核的自旋响应
- 批准号:
22340049 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Polarized hydrogen and deuterium target and Spin-Parity of Penta-quark particle
极化氢、氘靶与五夸克粒子的自旋宇称
- 批准号:
16340074 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
SPIN CHEMISTRY OF MEMBRANE INTERFACE
膜界面的自旋化学
- 批准号:
11694052 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B).
Study on electronic structure of itinerant ferromagnetic Mn pnictides by spin and angle resolved photoemission and inverse photoemission spectroscopies
自旋角分辨光电子发射光谱和反光电子发射光谱研究流动铁磁锰磷族化物的电子结构
- 批准号:
11440097 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B).