The Significance of Organellar Membrane Contact Sites in Photosynthetic Metabolism of Plant Cells

细胞器膜接触位点在植物细胞光合代谢中的意义

基本信息

项目摘要

Plant cell metabolism can switch between autotrophic and heterotrophic growth modes, depending on environmental conditions. In the light, metabolic cooperativity between several organelles is necessary for plant survival due to the process of photorespiration. Here, noxious glycolate produced by the oxygenase activity of Ribulose-1,5-bisphosphat carboxylase/oxygenase (RuBisCO) is recycled via eight enzymes partitioned between peroxisomes, mitochondria and chloroplasts.The established knowledge on the biochemical level of photorespiration faces a lack of knowledge regarding the function of spatial organelle organisation and the formation of specific membrane contacts sites (MCS). Whereas close associations between chloroplasts, mitochondria and peroxisomes have been monitored microscopically since decades, their molecular structure and their relevance for plant metabolism and performance remains unknown.Here we investigate the hypothesis that MCSs in plants underpin metabolic remodelling and provide the basis for reorganising the cell to respond effectively to changing environmental conditions. To address the question of specific and dynamic MCS formations between the photorespiratory organelles, we establish a set of genetically-encoded in vivo proximity biosensors, based on Bimolecular fluorescence complementation (BiFC) and Förster resonance energy transfer/ fluorescence lifetime imaging (FRET/FLIM), respectively. In addition, to address the molecular identity and function of MCS-resident proteins, we created a set of candidate proteins that will be expanded by labelling MCS-resident proteins using a promiscuous biotin ligase construct (BioID technique). By designing synthetic tethering constructs for organelle pairs, as well as by investigating mutant plant lines of candidate MCS-resident proteins, we will perturb MCS formation. In order to quantify the biological relevance of specific MCSs, we use plant growth phenotypes, photorespiratory capacity and metabolites, as well as photosynthetic parameters as a readout.Our results will solve the long-standing question of formation and physiological relevance of MCSs regarding photorespiration and plant performance during light/dark transitions. We will define were organelle proximity is based on specific association rather than spatial constraints. We anticipate our work to create links between cell biology, pathway partitioning between organelles, and plant metabolic plasticity. Furthermore, as photorespiration is a major target to understand and optimize photosynthetic plant performance, we expect our work to be relevant for future biotechnological approaches.
植物细胞代谢可以根据环境条件在自养和异养生长模式之间切换。在光呼吸过程中,几个细胞器之间的代谢协同作用是植物生存所必需的。在这里,有害的乙醇酸产生的加氧酶活性的核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)是通过八个酶之间的过氧化物酶体,线粒体和chloroplasts.The建立的光呼吸的生化水平的知识面临着缺乏知识的空间细胞器组织的功能和特定的膜接触点(MCS)的形成。而叶绿体,线粒体和过氧化物酶体之间的密切联系已经监测显微镜下几十年来,它们的分子结构和植物代谢和性能的相关性仍然未知,在这里,我们调查的假设,即在植物中的MCSs的基础代谢重塑和重组细胞有效地应对不断变化的环境条件下提供的基础。为了解决光呼吸细胞器之间的特定和动态MCS形成的问题,我们建立了一套遗传编码的体内邻近生物传感器,分别基于双分子荧光互补(BiFC)和Förster共振能量转移/荧光寿命成像(FRET/FLIM)。此外,为了解决MCS驻留蛋白的分子身份和功能,我们创建了一组候选蛋白,其将通过使用混杂生物素连接酶构建体(BioID技术)标记MCS驻留蛋白来扩增。通过设计细胞器对的合成拴系结构,以及通过研究候选MCS驻留蛋白的突变植物系,我们将干扰MCS的形成。为了量化特定MCSs的生物学相关性,我们使用植物生长表型、光呼吸能力和代谢产物以及光合参数作为读数,我们的研究结果将解决长期存在的MCSs的形成和生理相关性的问题,这些MCSs与光呼吸和植物在光/暗转换期间的表现有关。我们将定义细胞器的接近是基于特定的关联,而不是空间限制。我们期待我们的工作,以建立细胞生物学之间的联系,细胞器之间的途径分区,和植物代谢可塑性。此外,由于光呼吸是理解和优化光合植物性能的主要目标,我们希望我们的工作与未来的生物技术方法相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Stefanie Müller-Schüssele其他文献

Professorin Dr. Stefanie Müller-Schüssele的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Stefanie Müller-Schüssele', 18)}}的其他基金

ROS Bursts in Plant Growth and Fertility: Evolution and Diversification of the NADPH Oxidase Family
植物生长和生育力中 ROS 的爆发:NADPH 氧化酶家族的进化和多样化
  • 批准号:
    456649769
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似海外基金

Lifespan Regulation by Inter-Organellar Heme Signaling
细胞间血红素信号传导的寿命调节
  • 批准号:
    10722824
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Inter-organellar communication in metabolic reprogramming of colorectal cancer
结直肠癌代谢重编程中的细胞器间通讯
  • 批准号:
    10743454
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Emerging role of organellar dynamics-driven protein transport in phytohormone ABA production
细胞器动力学驱动的蛋白质运输在植物激素 ABA 生产中的新作用
  • 批准号:
    23KF0055
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reconstruction of functional plant organellar RNA editosome and characterization of its components
功能性植物细胞器RNA编辑体的重建及其成分的表征
  • 批准号:
    22KF0228
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
2023 Organellar Channels and Transporters GRC & GRS
2023 细胞器通道和转运体 GRC
  • 批准号:
    10609165
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The effects of holoparasitism on plant organellar translation and tRNA metabolism
全寄生对植物细胞器翻译和 tRNA 代谢的影响
  • 批准号:
    2322154
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Understanding inter-organellar communication in apicomplexan parasites
了解顶复门寄生虫的细胞器间通讯
  • 批准号:
    10714402
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Optogenetic toolkit for precise control of organellar calcium signaling
用于精确控制细胞器钙信号传导的光遗传学工具包
  • 批准号:
    10388807
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mechanistic Studies of Amino Acid Homeostasis and Organellar Crosstalk by GATOR1.
GATOR1 的氨基酸稳态和细胞器串扰的机制研究。
  • 批准号:
    RGPIN-2018-06227
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Molecular mechanism of organellar replication in Plasmodium falciparum
恶性疟原虫细胞器复制的分子机制
  • 批准号:
    2746213
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了