Energy Harvesting based on Ferroelectrets with Transverse Piezoelectric Effect

基于具有横向压电效应的铁电驻极体的能量收集

基本信息

项目摘要

Harvesting environmentally available energy and converting it to electrical energy is gaining increasing importance for energizing sensor networks and data transmission. Possible applications are monitoring and transmitting human life functions or important measurement data of remote objects. In this project, we will be studying ferroelectret energy harvesters using two different types of ferroelectret film samples and new device configurations. In the last couple of years, we have demonstrated that harvesters, utilizing the longitudinal piezoelectric effect (d33) of ferroelectrets, deliver about 1 µW of electrical power with a seismic mass of 1 g and a sinusoidal acceleration corresponding to gravity. However, using the transverse piezoelectric effect (d31) in optimized energy harvesters with so called parallel tunnel ferroelectrets, a power output of up to 2 mW was achieved under the same conditions recently. These results, obtained with an energy harvester with a size of only 8 mm x 5 mm, have not been published yet. First, we will improve the existing parallel tunnel ferroelectrets and we will investigate a new tubular air cavity approach, in which several fluorethylenpropylen (FEP) tubes will be thermally fused to form a ferroelectret membrane. Then, by combining these new materials with a seismic mass in various membrane type energy harvesting configurations, we will investigate energy harvesting devices which are significantly improved and modified compared to those used in our aforementioned work.Further, a new class of energy harvesting devices, based on a cantilever structure, will be investigated. This structure will consist of a metal or polymer cantilever beam onto which the soft ferroelectret and a seismic mass is mounted. This approach features two advantages: 1) An independent choice of the mechanical properties, primarily determined by the cantilever, can be made. This allows us to optimize the cantilever e.g. for low resonant frequencies along with large deflections. 2) The piezoelectric activity of the soft ferroelectret can be maximized independently by designing for large change in tunnel thickness during cantilever bending. Separating these functions by combining the hard cantilever with a soft ferroelectret is one of the promising ideas of our proposed project and should result in large electrical power output.For our new class of aforementioned devices with its independent adjustment of resonance frequency and piezoelectric activity, no experimental results have been obtained yet. However, our estimates indicate a power output from such novel devices in the order of several mWs. Thus, our new harvesters will most likely outperform existing ceramic-based cantilever devices.
收集环境可用的能量并将其转换为电能对于激励传感器网络和数据传输越来越重要。可能的应用是监测和传输人类生命功能或远程对象的重要测量数据。在这个项目中,我们将使用两种不同类型的铁电驻极体薄膜样品和新的设备配置来研究铁电驻极体能量采集器。在过去的几年里,我们已经证明,利用铁电驻极体的纵向压电效应(d33),收割机可以在1 g的地震质量和与重力对应的正弦加速度下提供约1 µW的电力。然而,在具有所谓的平行隧道铁电驻极体的优化能量收集器中使用横向压电效应(d31),最近在相同条件下实现了高达2mW的功率输出。这些结果是用尺寸仅为8 mm x 5 mm的能量采集器获得的,尚未发表。首先,我们将改进现有的平行隧道铁电驻极体,我们将研究一种新的管状空气腔的方法,其中几个氟乙烯丙烯(FEP)管将热熔合,形成一个铁电驻极体膜。然后,通过将这些新材料与各种膜式能量收集结构中的振动质量相结合,我们将研究与我们上述工作中使用的能量收集装置相比有显着改进和修改的能量收集装置。此外,将研究基于悬臂结构的新型能量收集装置。该结构将由金属或聚合物悬臂梁组成,其上安装有软铁电驻极体和地震质量。这种方法具有两个优点:1)可以独立选择主要由悬臂梁确定的机械性能。这使我们能够优化悬臂,例如,低谐振频率沿着与大偏转。2)在悬臂梁弯曲过程中,通过设计隧道厚度的大变化,可以独立地最大化软铁电驻极体的压电活性。通过将硬悬臂梁与软铁电驻极体相结合来分离这些功能是我们所提出的项目的有前途的想法之一,并且应该会产生大的电功率输出。对于我们的新一类上述器件,其谐振频率和压电活性独立调节,尚未获得实验结果。然而,我们的估计表明,从这样的新型设备的功率输出在几个mW的顺序。因此,我们的新收割机将很可能优于现有的陶瓷悬臂设备。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biodegradable additive manufactured ferroelectret as mechanical sensor
  • DOI:
    10.1109/sensors47087.2021.9639709
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Omar Ben Dali;S. Zhukov;C. Hartmann;H. Seggern;G. Sessler;M. Kupnik
  • 通讯作者:
    Omar Ben Dali;S. Zhukov;C. Hartmann;H. Seggern;G. Sessler;M. Kupnik
Acoustic energy harvesting with irradiated cross-linked polypropylene piezoelectret films
使用辐照交联聚丙烯压电驻极体薄膜收集声能
  • DOI:
    10.1088/1402-4896/ab00bd
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Xue Yuan;Zhao Jinfeng;Zhang Xiaoqing;Sessler Gerhard M.;Kupnik Mario
  • 通讯作者:
    Kupnik Mario
Microenergy Harvesters Based on Fluorinated Ethylene Propylene Piezotubes
  • DOI:
    10.1002/adem.201901399
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    S. Zhukov;H. von Seggern;Xiaoqing Zhang;Yuan Xue;O. Ben Dali;P. Pondrom;G. Sessler;M. Kupnik
  • 通讯作者:
    S. Zhukov;H. von Seggern;Xiaoqing Zhang;Yuan Xue;O. Ben Dali;P. Pondrom;G. Sessler;M. Kupnik
Ferroelectret-based flexible transducers: A strategy for acoustic levitation and manipulation of particles.
基于铁电驻极体的柔性换能器:声悬浮和粒子操纵的策略
Cantilever-based ferroelectret energy harvesting
  • DOI:
    10.1063/5.0006620
  • 发表时间:
    2020-06-15
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Ben Dali, O.;Pondrom, P.;Kupnik, M.
  • 通讯作者:
    Kupnik, M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Mario Kupnik其他文献

Professor Dr. Mario Kupnik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Mario Kupnik', 18)}}的其他基金

Structural integration of force sensors by selective laser melting (AddKraft)
通过选择性激光熔化实现力传感器的结构集成 (AddKraft)
  • 批准号:
    418628981
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Self-Other Discrimination - a Prerequisite of Man-Robot Cooperation?
自我他人歧视——人机合作的先决条件?
  • 批准号:
    402740893
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Biodegradable and eco-friendly sensors based on polylactide acid ferroelectrets with adjustable operating lifetime
基于聚丙交酯酸铁电驻极体的可生物降解且环保的传感器,具有可调的工作寿命
  • 批准号:
    509096131
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Q-dot-Glass based Thermoelectric Cooling (Q-Dot-TEC) by Thermal Energy Harvesting
基于 Q-dot-Glass 的热能收集热电冷却 (Q-Dot-TEC)
  • 批准号:
    EP/X032612/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Development of chalcogenide based monolithic thermoelectric generators for energy harvesting
用于能量收集的基于硫族化物的单片热电发电机的开发
  • 批准号:
    23K13270
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
High Performance Iron Germanide-Based Materials for Energy Harvesting Applications
用于能量收集应用的高性能锗化铁基材料
  • 批准号:
    22KF0390
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
High-performance perovskite-based energy harvesting devices
高性能钙钛矿能量收集装置
  • 批准号:
    RGPIN-2022-03161
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
A road-integrated, compression-based energy harvesting device operating at 98% efficiency.
A%20道路综合,%20基于压缩%20能源%20收获%20设备%20操作%20at%2098%%20效率。
  • 批准号:
    10028650
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Pnictogen-based semiconductors for Harvesting EneRgy from Ambient Light to power autonomous Devices (HERALD)
用于从环境光中收集能量为自主设备供电的基于 Pnictogen 的半导体 (HERALD)
  • 批准号:
    EP/X022900/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Additive Manufacturing of Polymer-based Smart Materials for Energy Harvesting Applications
用于能量收集应用的聚合物智能材料的增材制造
  • 批准号:
    560184-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
A Universal Energy Harvesting Platform Based on Hybrid organic-inorganic Composite Nanomaterial to Realize Self-powered Wireless Sensing Systems
基于杂化有机-无机复合纳米材料的通用能量收集平台,实现自供电无线传感系统
  • 批准号:
    555763-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Additive Manufacturing of Polymer-based Smart Materials for Energy Harvesting Applications
用于能量收集应用的聚合物智能材料的增材制造
  • 批准号:
    560184-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: Development of Low Order Modeling Methods for Oscillating Foil Energy Harvesting based on Experimental and Computational Fluid Dynamics
合作研究:基于实验和计算流体动力学的振荡箔能量收集低阶建模方法的开发
  • 批准号:
    2234498
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了