Approximation and reconstruction of stresses in the deformed configuration for hyperelastic material models
超弹性材料模型变形构型中应力的近似和重建
基本信息
- 批准号:392587488
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to provide an improved understanding of elastic behavior at finite strains by promising finite element approaches which have so far mostly been studied in the context of linear elasticity. In particular, these include nonconforming P2 elements on triangles and tetrahedra which have advantageous properties with respect to local momentum conservation and inf-sup stability. Our plan is to investigate how much of these favourable properties carry over to the hyperelastic situation. Momentum-conservative stresses can be reconstructed from displacement-pressure approximations using computations on local patches. In the case of hyperelastic material models, the reconstruction is somewhat more involved since the input stress arising directly from the displacement-pressure approximation is not piecewise linear anymore. Much more severe, however, are the difficulties associated with the use of these stress reconstructions to provide an a posteriori error estimator. The nonlinearity of the problem makes the situation much more complicated and we attempt to widen the range of applicability as much aspossible.Approaches which compute stress approximations directly in H (div)-conforming finite element spaces will also be studied from the mathematical as well as from the mechanical side. To this end, least-squares finite element methods will be modified concerning the treatment of stress symmetry and the enforcement of inter-element continuity conditions.Finally, we will focus our attention on the Hellinger-Reissner principle for the direct computation of stress approximations which are momentum-conservative. For all these approaches, parametric Raviart-Thomas finite element spaces lend themselves for the approximation of the Cauchy stresses using a formulation that is completely set in the material configuration.
该项目的目标是提供一个更好的理解有限应变下的弹性行为的有前途的有限元方法,迄今为止主要是在线性弹性的背景下研究。特别地,这些包括在三角形和四面体上的具有相对于局部动量守恒和inf-sup稳定性的有利性质的P2元素。我们的计划是调查这些有利的性质有多少延续到超弹性的情况。动量守恒应力可以用局部面片上的计算从位移-压力近似中重建出来。在超弹性材料模型的情况下,由于直接由位移-压力近似产生的输入应力不再是分段线性的,因此重建在某种程度上更加复杂。然而,更严重的是与使用这些应力重建提供后验误差估计相关的困难。问题的非线性使情况更加复杂,我们试图扩大适用范围尽可能多的aspossibility.Approaches直接计算应力近似在H(div)-协调有限元空间也将研究从数学以及从机械方面。最后,我们将着重讨论直接计算动量守恒应力近似的Hellinger-Reissner原理。对于所有这些方法,参数Raviart-Thomas有限元空间适合于使用完全设置在材料配置中的公式来近似柯西应力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Fleurianne Bertrand其他文献
Professorin Dr. Fleurianne Bertrand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
利用CRISPR内源性激活Atoh1转录促进前庭毛细胞再生和功能重建
- 批准号:82371145
- 批准年份:2023
- 资助金额:46.00 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
体外构建角膜内皮细胞膜片行后弹力层内皮移植后的功能评价
- 批准号:31140025
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
碳/碳复合材料膺复体仿生喉气管重建动物模型建立
- 批准号:51172002
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
肝脏管道系统数字化及三维成像的研究
- 批准号:30470493
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
应用电镜和计算机三维重构技术研究蛋白质RecA与DNA形成的生物大分子复合物的结构和功能
- 批准号:30470349
- 批准年份:2004
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
FaVoRe - Fast Volumetric Reconstruction
FaVoRe - 快速体积重建
- 批准号:
10083559 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Atomistic reconstruction of large biomolecular systems from low-resolution cryo-electron microscopy data - RECKON
利用低分辨率冷冻电子显微镜数据原子重建大型生物分子系统 - RECKON
- 批准号:
EP/Y010221/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
ZooCELL: Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data ..
ZooCELL:追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模态数据方面的多学科培训..
- 批准号:
EP/Y037049/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data analysis
追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模式数据分析的多学科培训
- 批准号:
EP/Y037081/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
- 批准号:
EP/X039277/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
One-step reconstruction of plastic waste back to its constituent monomers (ONESTEP)
将塑料废物一步重建回其组成单体(ONESTEP)
- 批准号:
EP/Y003934/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
A self-driven intramedullary nail for the reconstruction of large bone defects
用于重建大骨缺损的自驱动髓内钉
- 批准号:
MR/Z503836/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Deep Learning for 3-D reconstruction of heterogeneous molecular structures from Cryo-EM data
利用冷冻电镜数据进行异质分子结构 3D 重建的深度学习
- 批准号:
BB/Y513878/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
3DFace@Home: A pilot study for robust and highly accurate facial 3D reconstruction from mobile devices for facial growth monitoring at home
3DFace@Home:一项通过移动设备进行稳健且高精度面部 3D 重建的试点研究,用于家庭面部生长监测
- 批准号:
EP/X036642/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Fast Reconstruction and Real-time Rendering of Immersive Light Field Video
沉浸式光场视频的快速重建与实时渲染
- 批准号:
DP240103334 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects