Toward a data-driven framework for hydrogeological uncertainty characterization

建立水文地质不确定性表征的数据驱动框架

基本信息

项目摘要

The relevance of data to subsurface hydrology, or hydrogeology, is particularly high due to the combination of highly-heterogeneous subsurface properties and the general scarcity of data. This scarcity is caused by the high costs often associated with subsurface exploration. As a result, widely available access to data sets on subsurface conditions should be paramount, since it facilitates the application of data-driven methods like machine learning or Bayesian statistics.Yet collecting these data and making them available to practitioners remains difficult. Currently, the largest database on geostatistical parameters of the subsurface is the World-Wide HYdrogeological Parameters DAtabase (WWHYPDA). It contains approximately 20,000 measurements from 150 sites worldwide. This represents only a small fraction of the total amount of available data, which puts some limit on the characterization of the parametric uncertainty found in the subsurface. Moreover, the WWHYPDA does not contain any information on spatial correlation structures, like correlation lengths or empirical variograms, which means that no information on structural uncertainty can be gleaned from it.In this project, I want to address this problem by increasing the number of data assets available to the community of scientists and practitioners of (stochastic) subsurface hydrology. Mainly two different types of data are going to be used. The first data type is geo-referenced measurements of conductivity and transmissivity fields. They provide the most direct way to estimate spatial correlation structure and are consequently a natural choice. In addition, estimates on statistics of spatial structures exist in the literature and can be used if properly collected and integrated into the database. Finally, pumping tests are going to be used. Pumping tests are a well-established technique for the characterization of subsurface systems. Their application has, however, historically been focussed on the inference of one-point statistics, like the mean value, only. Yet, more recent developments have made it possible to infer two-point statistics, like the correlation length, from pumping tests, as well. After these additional data have been gathered, the final step is to amend existing tools and potentially providing new tools for analyzing, testing and processing these data.If successfully finished, the results from this project would provide a database as well as a number of algorithms, which will facilitate practitioners for the first time to employ data-driven methods to characterize structural uncertainty of the subsurface. If this project succeeds, the process of collecting and making these data available will be streamlined, updated and greatly expanded. In addition, a number of tools will be made available which can help to analyze, process and test these data.
数据与地下水文学或水文地质学的相关性特别高,这是由于高度异质的地下属性和普遍的数据稀缺所致。这种稀缺是由于地下勘探往往伴随着高昂的成本造成的。因此,广泛获得关于地下条件的数据集应该是至关重要的,因为它促进了机器学习或贝叶斯统计等数据驱动方法的应用。然而,收集这些数据并将其提供给从业人员仍然很困难。目前,关于地下地质统计参数的最大数据库是世界水文地质参数数据库(WWHYPDA)。它包含了来自全球150个地点的大约20,000个测量值。这只占可用数据总量的一小部分,这对地下参数不确定性的表征施加了一定的限制。此外,WWHYPDA不包含任何关于空间相关性结构的信息,如相关长度或经验变异函数,这意味着无法从它中收集关于结构不确定性的信息。在这个项目中,我想通过增加(随机)地下水文学科学家和实践者社区可用的数据资产来解决这个问题。主要将使用两种不同类型的数据。第一种数据类型是导电率和透射率场的地理参考测量。它们提供了估计空间相关性结构的最直接方法,因此是一个自然而然的选择。此外,对空间结构统计数据的估计存在于文献中,如果适当收集并合并到数据库中,就可以使用。最后,将使用抽水测试。抽水试验是表征地下系统的一种成熟的技术。然而,它们的应用历史上只集中在一点统计数据的推断上,如平均值。然而,最近的发展使人们有可能从抽水试验中推断出两点统计数据,比如关联长度。在收集了这些额外的数据后,最后一步是修改现有的工具,并可能提供新的工具来分析、测试和处理这些数据。如果成功完成,该项目的结果将提供一个数据库和一些算法,这将有助于从业者首次使用数据驱动的方法来表征地下结构的不确定性。如果该项目成功,收集和提供这些数据的过程将得到精简、更新和极大的扩展。此外,还将提供一些工具,帮助分析、处理和测试这些数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Falk Hesse其他文献

Dr. Falk Hesse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Falk Hesse', 18)}}的其他基金

Discerning connectivity features and scaling behaviour of spatial random fields through the Method of Anchored Distributions (MAD).
通过锚定分布方法 (MAD) 辨别空间随机场的连通性特征和缩放行为。
  • 批准号:
    245357759
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于高频信息下高维波动率矩阵估计及应用
  • 批准号:
    71901118
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
半参数空间自回归面板模型的有效估计与应用研究
  • 批准号:
    71961011
  • 批准年份:
    2019
  • 资助金额:
    16.0 万元
  • 项目类别:
    地区科学基金项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
体数据表达与绘制的新方法研究
  • 批准号:
    61170206
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
  • 批准号:
    11061041
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Data-driven phenotyping of central disorders of hypersomnolence with unsupervised clustering: toward more reliable diagnostic criteria
无监督聚类的数据驱动的中枢性嗜睡症表型分析:寻求更可靠的诊断标准
  • 批准号:
    481046
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Data-Driven Shape Optimization Problem toward Shock Wave Boundary Layer Interaction
冲击波边界层相互作用的数据驱动形状优化问题
  • 批准号:
    23K03659
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing a data-driven, real-time electron microscopy method toward interpreting plastic deformation and fracture mechanisms of structural materials in sub-microscopic level.
开发一种数据驱动的实时电子显微镜方法,以解释亚微观水平结构材料的塑性变形和断裂机制。
  • 批准号:
    23H00238
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Novel physiologically-driven phenotypes for the prognosis of cardiovascular outcomes in sleep apnea: Toward precision medicine in sleep health
用于睡眠呼吸暂停心血管结局预后的新型生理驱动表型:迈向睡眠健康的精准医学
  • 批准号:
    10577765
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Novel physiologically-driven phenotypes for the prognosis of cardiovascular outcomes in sleep apnea: Toward precision medicine in sleep health
用于睡眠呼吸暂停心血管结局预后的新型生理驱动表型:迈向睡眠健康的精准医学
  • 批准号:
    10360301
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
CAREER: Integrating Information Theory with Data-Driven Mechanics: Toward Predictive Modeling of Material Behavior far from Equilibrium
职业:将信息理论与数据驱动力学相结合:对远离平衡的材料行为进行预测建模
  • 批准号:
    2047506
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Toward Establishing Data-Driven Incentive Engineering
建立数据驱动的激励工程
  • 批准号:
    21H04890
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Neuroscience, Immunology, Social Adversity and the Roots of Addictive Behaviors: Toward a New Framework for Drug Use Etiology and Prevention
神经科学、免疫学、社会逆境和成瘾行为的根源:建立药物使用病因学和预防的新框架
  • 批准号:
    10454994
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Neuroscience, Immunology, Social Adversity and the Roots of Addictive Behaviors: Toward a New Framework for Drug Use Etiology and Prevention
神经科学、免疫学、社会逆境和成瘾行为的根源:建立药物使用病因学和预防的新框架
  • 批准号:
    10670873
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Toward data-driven ATE program improvement: Leveraging statewide longitudinal data to create faculty-inspired tools for decision making
实现数据驱动的 ATE 项目改进:利用全州范围的纵向数据创建受教师启发的决策工具
  • 批准号:
    1902019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了