Algebraic agents playing board games - Visualization of algebraic systems for Kansei
代数智能体玩棋盘游戏 - 感性代数系统的可视化
基本信息
- 批准号:24650099
- 负责人:
- 金额:$ 2.08万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Challenging Exploratory Research
- 财政年份:2012
- 资助国家:日本
- 起止时间:2012-04-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research is to provide a first step towards formulating a framework for understanding algebras in terms of Kansei engineering by letting elements in some algebraic systems play board games. We call such elements algebraic agents. We confine ourselves to a kind of board games with n*n squares (cells) arranged in an n-by-n grid. There are two or more teams of elements with their characteristic algebraic operations. For example, two teams of integers whose operations are addition and multiplication, respectively. Each agent can move from one cell to other cell. When two algebraic agents encounter, their fight starts. They win or lose the fight by means of their own operations. Then the winner survives and the loser disappears or is transferred to his opposing team. Finally the team which defeats all agents in other teams gains a victory.
本研究的目的是通过让一些代数系统中的元素玩棋盘游戏,为根据感性工程学制定理解代数的框架提供第一步。我们称这样的元素为代数代理。我们将自己局限于一种棋盘游戏,其中n*n个正方形(细胞)排列在n*n个网格中。有两组或两组以上具有其特征代数运算的元素。例如,两组整数,它们的运算分别是加法和乘法。每个代理可以从一个细胞移动到另一个细胞。当两个代数代理相遇时,他们的战斗开始了。他们通过自己的操作来赢得或输掉战斗。然后赢家存活下来,输家消失或被转移到对方球队。最后,击败其他队伍中所有特工的队伍获得胜利。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Variable Neighborhood Model for Agent Control IntroducingPersonal Spaces and Accessibility Relations between Agents
引入个人空间和智能体之间可达性关系的智能体控制变量邻域模型
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0.7
- 作者:S.Ubukata;T.Murai;Y.Kudo;S.Akama
- 通讯作者:S.Akama
A Variable Neighborhood Model for agent control Introducing Personal Spaces and Accessibility Relations between Agents
代理控制的可变邻域模型引入代理之间的个人空间和可达性关系
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:S.Ubukata;T.Murai;Y.Kudo;S.Akama
- 通讯作者:S.Akama
Shall We Let Algebraic Agents Play a Board Game ?
我们应该让代数智能体玩棋盘游戏吗?
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:K.ENDO;T.MURAI;Y.KUDO;M.F.KAWAGUCHI;N.V.HUNYH
- 通讯作者:N.V.HUNYH
A Basic Consideration on Neighborhoods Accessibility Relations
对邻里可达性关系的基本思考
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:S.Ubukata;T.Murai;Y.Kudo;S.Akama
- 通讯作者:S.Akama
A basic consideration on neighborhoods and accessibility relations
对邻里关系和可达性关系的基本考虑
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:S.Ubukata;T.Murai;Y.Kudo;S.Akama;T.Murai
- 通讯作者:T.Murai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MURAI Tetsuya其他文献
MURAI Tetsuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MURAI Tetsuya', 18)}}的其他基金
A Study on Automatic Indexing of Image Contents Based on Semantic Field by Modal Logic
基于语义场的模态逻辑图像内容自动索引研究
- 批准号:
14380171 - 财政年份:2002
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 2.08万 - 项目类别:
Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 2.08万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 2.08万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
- 批准号:
2342254 - 财政年份:2024
- 资助金额:
$ 2.08万 - 项目类别:
Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 2.08万 - 项目类别:
Standard Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
- 批准号:
2337178 - 财政年份:2024
- 资助金额:
$ 2.08万 - 项目类别:
Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 2.08万 - 项目类别:
Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 2.08万 - 项目类别:
Standard Grant














{{item.name}}会员




