On the structure of arithmetic facts in memory and its interaction with numerical magnitude representation

论内存中算术事实的结构及其与数值幅度表示的相互作用

基本信息

  • 批准号:
    394685337
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2017
  • 资助国家:
    德国
  • 起止时间:
    2016-12-31 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Although basic mathematical concepts (e.g., multiplication) are a fundamental requirement in contemporary technological societies, approximately 5% of the population are affected by difficulties in the acquisition of mathematical skills. This highlights the importance of investigating the cognitive mechanisms that allow to develop and understand mathematical knowledge. This project aims at enhancing the comprehension of one of the core components of mathematical cognition, that is the memory system that underpins the storage of simple multiplication problems (e.g., 4×3), and its interaction with the numerical magnitude representation.Mathematical skills and concepts are thought to be rooted in the approximate number system (ANS), that is an analogue magnitude representation of numerical quantities, conceptualized as a spatially oriented mental number line. However, it still remains unclear how and to what extent the ANS actually affects the processes associated with the arithmetic facts memory. This project aims at investigating (1) the internal structure of the arithmetic facts memory and (2) its functional relationship with the ANS. To this end, we will test the predictions of two concurrent models describing the architecture of this memory system. First, the Asymmetric Interference Model, proposed by the applicants, assumes that arithmetic facts are represented in a semantic network architecture (for a similar notion see Campbell, 1995). The retrieval of entries within this network is affected by the ANS and its compressed metric (i.e., the overlap between the representations of two adjacent numbers increases as the magnitude of the numbers increases). Second, the Interacting Neighbors Model (Verguts & Fias, 2005) assumes that the structure of arithmetic facts memory is shaped by the features of the culturally determined number syntax. Namely, within this memory system the result of a problem is represented in a componential fashion, following the syntax of the base-10 system (e.g., the number 21 means 2 decades and 1 unit). This model thus assumes that the internal structure of the arithmetic facts memory is (a) organized according to this (arbitrary) symbolic syntax and (b) retrieval is not affected by the semantic content of the constituents of the problem.In a set of 4 behavioral and 1 electroencephalography experiments, we will evaluate the assumptions of these two models by testing their predictions regarding the behavioral performance and the electrophysiological correlates (i.e., event-related potentials) associated with multiplication problem-solving. The results provided by this project will allow developing a more precise understanding of the processes involved in the retrieval of arithmetic facts and a more accurate description of the internal structure of this memory system.
虽然基本的数学概念(例如,在当代技术社会中,数学技能(乘法)是一项基本要求,但约有5%的人口在获得数学技能方面存在困难。这突出了调查认知机制的重要性,使发展和理解数学知识。这个项目旨在提高对数学认知的核心组成部分之一的理解,即支持简单乘法问题存储的记忆系统(例如,数学技能和概念被认为植根于近似数系统(ANS),即数字量的模拟量表示,概念化为空间取向的心理数字线。然而,目前还不清楚ANS如何以及在多大程度上影响与算术事实记忆相关的过程。本研究旨在探讨(1)算术事实记忆的内部结构及其与自主神经系统的功能关系。为此,我们将测试两个并发模型的预测描述这个内存系统的架构。首先,由申请人提出的非对称干扰模型假设算术事实在语义网络架构中表示(对于类似的概念,参见坎贝尔,1995)。该网络内的条目的检索受ANS及其压缩度量(即,两个相邻数字的表示之间的重叠随着数字的大小增加而增加)。第二,交互邻居模型(Verguts & Fias,2005)假设算术事实记忆的结构是由文化决定的数字语法的特征塑造的。也就是说,在该存储器系统内,问题的结果以分量方式表示,遵循基数10系统的语法(例如,数字21意味着2个十年和1个单位)。因此,该模型假设算术事实存储器的内部结构是(a)根据以下内容组织的:(任意)符号句法和(B)检索不受问题成分的语义内容的影响在一组4个行为和1个脑电图实验中,我们将通过测试这两个模型关于行为表现和电生理相关性的预测来评估这两个模型的假设(也就是说,事件相关电位(event-related potential)与乘法问题解决有关。该项目提供的结果将允许开发一个更精确的理解过程中涉及的算术事实的检索和更准确的描述这个记忆系统的内部结构。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Response: Commentary: The Developmental Trajectory of the Operational Momentum Effect
回应:评论:运营动量效应的发展轨迹
  • DOI:
    10.3389/fpsyg.2019.00160
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Didino;Pinheiro-Chagas
  • 通讯作者:
    Pinheiro-Chagas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Daniele Didino, Ph.D.其他文献

Dr. Daniele Didino, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Daniele Didino, Ph.D.', 18)}}的其他基金

Using masked priming to investigate the cognitive principles that govern unconscious processing and their effect on arithmetic fact retrieval
使用掩蔽启动来研究控制无意识处理的认知原理及其对算术事实检索的影响
  • 批准号:
    440648760
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Arithmetic Structure in Dense Sets
稠密集中的算术结构
  • 批准号:
    2401117
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
  • 批准号:
    2337942
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Arithmetic of Thin Groups and Isogeny-Based Cryptography
稀疏群算法和基于同源的密码学
  • 批准号:
    2401580
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Visions in Arithmetic and Beyond
会议:算术及其他领域的愿景
  • 批准号:
    2402436
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
  • 批准号:
    2338933
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Groups and Arithmetic
群与算术
  • 批准号:
    2401098
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
  • 批准号:
    2401321
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了