Using Assembly Guided by Particle Position and Shape to Build Advanced Microactuators Modulated by DNA Origami

使用粒子位置和形状引导的组装来构建由 DNA 折纸调制的先进微执行器

基本信息

项目摘要

Recently, a new method that uses the bespoke shape and pre-position position of micron-scaled superparamagnetic particles to guide self-assembly has emerged. Christened APPS (Assembly Guided by Particle Position and Shape), the technique is particularly suited to the building of microstructures that exhibit complex and controllable actuation on the granular/colloidal scale and that therefore have application in advanced microrobotics.However, APPS is still in its infancy and the aim of this proposal is to develop it to a point where it can be employed to make such functional microstructures of choice. To achieve this grand goal, two sets of design rules are required. The first connecting the shape and pre-position of particles to the design of architectures they form and the second relating architecture design, itself, to actuation performance.This project sets out to establish the first set of these rules by structurally categorizing architectures assembled from a large range of bespoke and systematically-altered particle shapes and patterns. To ascertain the second set of rules, the actuation performance of systematically altered architecture designs, built by applying the first set, will be characterized and categorized. Moreover, flexibility of the architectures will be ensured through the use of tailor-made DNA (DNA origami) linkers between their parts and the effect of linker design on actuation performance will also be explored. Hence, architecture, on the nano and microscale, will be connected to actuation performance to build actuators with exceptional performance on the micron scale.
最近,出现了一种利用微米级超顺磁性粒子的定制形状和预置位置来引导自组装的新方法。这项技术被命名为APPS(由粒子位置和形状引导的装配),特别适合于在颗粒/胶体尺度上表现出复杂和可控的驱动的微结构的构建,因此在先进的微型机器人中具有应用。然而,APPS仍处于起步阶段,本提案的目的是将其开发到可以用于制造此类功能微结构的程度。要实现这一宏伟目标,需要两套设计规则。第一个将粒子的形状和前置位置与它们形成的建筑设计联系起来,第二个将建筑设计本身与驱动性能联系起来。本项目旨在通过对由大量定制和系统更改的粒子形状和图案组装而成的建筑进行结构分类,建立第一套这些规则。为了确定第二套规则,通过应用第一套规则构建的系统更改的建筑设计的驱动性能将被表征和分类。此外,通过在其部件之间使用定制的DNA(DNA折纸)链接器来确保体系结构的灵活性,还将探讨链接器设计对驱动性能的影响。因此,纳米和微米级的体系结构将与驱动性能相联系,以制造具有微米级卓越性能的执行器。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Programmable Design and Performance of Modular Magnetic Microswimmers
  • DOI:
    10.1002/adma.202006237
  • 发表时间:
    2021-03-14
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Pauer,Christoph;du Roure,Olivia;Tavacoli,Joe
  • 通讯作者:
    Tavacoli,Joe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Joseph Tavacoli Khalkhali, Ph.D.其他文献

Dr. Joseph Tavacoli Khalkhali, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Joseph Tavacoli Khalkhali, Ph.D.', 18)}}的其他基金

Probing and Leveraging the Collective Effects of Flexible Biomimetic Microswimmers
探索和利用灵活仿生微型游泳器的集体效应
  • 批准号:
    469165435
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
  • 批准号:
    21171046
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Smart scaffolds for guided tissue and organ assembly
用于引导组织和器官组装的智能支架
  • 批准号:
    RGPIN-2018-05500
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Graphene-Based Nanocomposites through Guided Interfacial Assembly
通过引导界面组装的先进石墨烯基纳米复合材料
  • 批准号:
    RGPIN-2015-06600
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Smart scaffolds for guided tissue and organ assembly
用于引导组织和器官组装的智能支架
  • 批准号:
    RGPIN-2018-05500
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Elucidating Fundamental Factors Driving Self-assembly with Guided Interactions in Multicomponent Enzyme Systems Using Model Nanostructured Platforms
使用模型纳米结构平台阐明多组分酶系统中通过引导相互作用驱动自组装的基本因素
  • 批准号:
    2108448
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Building reconfigurable photonic materials and devices by light-guided self-assembly of nanoparticles
通过纳米粒子的光导自组装构建可重构光子材料和器件
  • 批准号:
    2131079
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mechanisms Underlying Type II Cadherin Guided Assembly of Retinal Circuits
II 型钙粘蛋白引导视网膜电路组装的潜在机制
  • 批准号:
    10317067
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Mechanisms underlying CD3ÃÂö guided assembly of retinal circuits
CD3引导视网膜电路组装的潜在机制
  • 批准号:
    10256065
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Mechanisms Underlying Type II Cadherin Guided Assembly of Retinal Circuits
II 型钙粘蛋白引导视网膜电路组装的潜在机制
  • 批准号:
    10541108
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Mechanisms Underlying Type II Cadherin Guided Assembly of Retinal Circuits
II 型钙粘蛋白引导视网膜电路组装的潜在机制
  • 批准号:
    9886125
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Mechanisms underlying CD3ζ guided assembly of retinal circuits
CD3γ 引导视网膜电路组装的机制
  • 批准号:
    10034400
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了