Random graphs: cores, colourings and contagion

随机图:核心、着色和传染

基本信息

项目摘要

Since the pioneering work of Paul Erdos and Alfred Renyi from the middle of the last century the study of random graphs has been a topic of fundamental interest in combinatorics. Random graphs have been used in extremal combinatorics to construct objects with apparently self-contradictory properties as required in Ramsey theory. A very well-known recent contribution of this kind is the work of Bohman and Keevash (2013) on the triangle-free random graph process, which yields a bound on the Ramsey number R(3,k). Other applications emerge in computer science, where random (hyper-)graphs are used as hashing schemes (Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh, Rink 2010) or in the construction of error-correcting codes (e.g. Giurgiu, Macris, Urbanke 2016). Furthermore, random graphs play an important role in the study of complex networks (e.g. van der Hofstad 2016). Despite their importance in combinatorics, computer science and many other disciplines, several important properties of random graphs remain poorly understood. The aim of this project, which is a joint D-A-CH application by Amin Coja-Oghlan of Goethe University Frankfurt and Mihyun Kang of TU Graz, is to make significant progress on several fundamental and (in some cases) long-standing open problems by bringing to bear our joint arsenal of modern mathematical techniques. Concrete topics include the k-core problem in random graphs, which is perhaps the most natural generalisation of the 'giant component' problem studied in the seminal work of Erdos and Renyi, the chromatic number problem, originally posed by Erdos and Renyi in 1960, and the contagion problem of cascading infections.
自上个世纪中期Paul Erdos和Alfred Renyi的开创性工作以来,随机图的研究一直是组合学中的一个基本兴趣话题。随机图已被用于极值组合学中,以构造具有明显自相矛盾性质的对象,如拉姆齐理论所要求的。最近一个非常著名的贡献是Bohman和Keevash(2013)关于无三角随机图过程的工作,它给出了Ramsey数R(3,k)的界。其他应用出现在计算机科学中,其中随机(超)图被用作散列方案(Dietzfelbinger,Goerdt,Mitzenmacher,Montanari,Pagh,Rink 2010)或用于纠错码的构造(例如Giurgiu,Macris,Urbanke 2016)。此外,随机图在复杂网络的研究中发挥着重要作用(例如货车der Hofstad 2016)。 尽管随机图在组合数学、计算机科学和许多其他学科中很重要,但它的一些重要性质仍然知之甚少。该项目的目的是由歌德大学法兰克福的Amin Coja-Oghlan和格拉兹的Mihyun Kang联合提出的D-A-CH应用,旨在通过运用我们的现代数学技术,在几个基本的和(在某些情况下)长期存在的开放问题上取得重大进展。具体的议题包括k-核心问题的随机图,这也许是最自然的概括的“巨人组成部分”问题研究的开创性工作的鄂尔多斯和仁义,色数问题,最初提出的鄂尔多斯和仁义在1960年,和传染问题的级联感染。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Amin Coja-Oghlan其他文献

Professor Dr. Amin Coja-Oghlan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Amin Coja-Oghlan', 18)}}的其他基金

Exakte Analyse von Heuristiken
启发式的准确分析
  • 批准号:
    27747670
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Message passing algorithms, information-theoretic thresholds and computational barriers
消息传递算法、信息论阈值和计算障碍
  • 批准号:
    393689644
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Sparse random combinatorial structures
稀疏随机组合结构
  • 批准号:
    517012267
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Reconstruction and Learning in Complex Networks
复杂网络中的重构和学习
  • 批准号:
    438574637
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似国自然基金

不完备信息下基于流向图的诊断知识获取理论与方法
  • 批准号:
    51175102
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
线性码、群码和格的trellis研究
  • 批准号:
    60772131
  • 批准年份:
    2007
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
  • 批准号:
    DP240101322
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards Processing of Big Streaming Temporal Graphs
面向大流时态图的处理
  • 批准号:
    DE240100668
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Developing Algorithms for Identifying Gene Modules in Single-Cell RNA-Seq Using Signed Graphs
开发使用符号图识别单细胞 RNA-Seq 中基因模块的算法
  • 批准号:
    24K18100
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了