Spin-orbitronics in epitaxial CuMnSb/NiMnSb half-Heusler heterostructures
外延 CuMnSb/NiMnSb 半赫斯勒异质结构中的自旋轨道电子学
基本信息
- 批准号:397861849
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project spin-orbit torque (SOT) related effects in heterostructures comprised of the half-Heusler alloys CuMnSb (antiferromagnetic, AFM) and NiMnSb (ferromagnetic, FM) will be investigated. Such spin-orbit torques originate from charge currents that get spin polarized when passing through materials with strong spin-orbit coupling (SOC). For ferromagnetic or antiferromagnetic SOC materials, this spin polarization interacts locally with the magnetic moments. This field of experiments that takes advantage ofthe spin-orbit torque is recently called “spin-orbitronics”.As a first step a molecular beam epitaxy growth process for high crystal quality CuMnSb will be further developed and optimized. Single layers of CuMnSb will be grown on InAs (001) substrates; heterostructures of CuMnSb combined with NiMnSb will be grown on InP (001) substrates. As grown samples will be mainly characterized by X-Ray diffraction for crystal properties and quality, as well as by SQUID to determine magnetic parameters. In NiMnSb/CuMnSb heterostructures, the exchange coupling between the FM and the AFM will be of special interest. For electrical characterization a standard hall-bar geometry will be patterned using optical lithography. Here, we material parameters will be determined, such as resistivity or Hall-constant. Several experiments that make use of the spin-orbit torque will be conducted: 1) Single layers of epitaxial CuMnSb will be used to demonstrate switching of the magnetic sublattice of the AFM. Via the anisotropic magnetoresistance (AMR), we will be able to probe the orientation of the magneticsublattice. 2) In a second set of devices, we will combine AFM CuMnSb and ferromagnetic films deposited by sputtering. Here, our main goal is to switch the magnetization of the FM using the spin-orbit torque created in the AFM and the exchange coupling. 3) For the final devices, fully epitaxial NiMnSb/CuMnSb heterostructures will be used to fabricate tunneling anisotropic magnetoresistance devices. These devicesoffer the possibility to investigate magnetic characteristics of the CuMnSb in a magnetotransport experiment by making use of the exchange spring effect.
在这个项目中,我们将研究半Heusler合金CuMnSb(反铁磁,AFM)和NiMnSb(铁磁,FM)组成的异质结中与自旋轨道扭矩(SOT)相关的效应。这种自旋-轨道扭矩源于电荷电流,当通过具有强烈自旋-轨道耦合(SOC)的材料时,电荷电流会产生自旋极化。对于铁磁或反铁磁SOC材料,这种自旋极化与磁矩局部相互作用。这个利用自旋-轨道扭矩的实验领域最近被称为“自旋-轨道电子学”。作为第一步,我们将进一步开发和优化高质量CuMnSb的分子束外延生长工艺。在InAs(001)衬底上生长单层CuMnSb,在InP(001)衬底上生长CuMnSb与NiMnSb结合的异质结。生长的样品将主要通过X射线衍射来表征晶体的性质和质量,以及通过SQUID来确定磁性参数。在NiMnSb/CuMnSb异质结中,FM和AFM之间的交换耦合将引起人们的特别关注。对于电学特性,将使用光学光刻技术对标准的霍尔杆几何形状进行图案化。在这里,我们将确定材料参数,如电阻率或霍尔常数。将进行几个利用自旋轨道力矩的实验:1)将使用单层外延CuMnSb来演示AFM的磁亚晶格的切换。通过各向异性磁阻(AMR),我们将能够探测到磁亚晶格的取向。2)在第二套装置中,我们将AFM CuMnSb与溅射沉积的铁磁性薄膜相结合。在这里,我们的主要目标是利用原子力显微镜中产生的自旋轨道扭矩和交换耦合来切换FM的磁化。3)对于最终器件,将采用全外延NiMnSb/CuMnSb异质结来制备隧道各向异性磁阻器件。这些装置为利用交换弹簧效应在磁输运实验中研究CuMnSb的磁特性提供了可能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Johannes Kleinlein其他文献
Dr. Johannes Kleinlein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: Spin-orbitronics in quantum materials for energy-efficient neuromorphic computing
RII Track-4:NSF:量子材料中的自旋轨道电子学用于节能神经形态计算
- 批准号:
2229498 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Deciphering spin-orbit torque in magnetic single layers: Towards spin-torque devices with extended scalability
解读磁性单层中的自旋轨道扭矩:迈向具有扩展可扩展性的自旋扭矩设备
- 批准号:
20K15156 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Nano-spintronics and orbitronics innovated by photoelectron microscopy
光电子显微镜创新的纳米自旋电子学和轨道电子学
- 批准号:
19KK0137 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Spin-orbitronics in oxides
氧化物中的自旋轨道电子学
- 批准号:
18K14111 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Magnetic Skyrmion for Nonvolatile Low-Power Spin-Orbitronics Applications
用于非易失性低功耗自旋轨道电子学应用的磁性斯格明子
- 批准号:
1611570 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
ホイスラー合金層を用いた多結晶面直電流型巨大磁気抵抗素子の高出力化
使用Heusler合金层的高输出多晶直流型巨磁阻元件
- 批准号:
15J00221 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Spin-orbitronics and device application
自旋轨道电子学及器件应用
- 批准号:
15H05702 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Specially Promoted Research
Computational design and modeling of topological insulator-based heterostructures for spin-orbitronics and skyrmionics
用于自旋轨道电子学和斯格明子学的基于拓扑绝缘体的异质结构的计算设计和建模
- 批准号:
1509094 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Spin Orbitronics: Interfacial Design of Spintronic Materials and Devices
自旋轨道电子学:自旋电子材料和器件的界面设计
- 批准号:
1408172 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Spin+Orbit Coupling: Orbitronics and spin-orbit effects (A01)
自旋轨道耦合:轨道电子学和自旋轨道效应 (A01)
- 批准号:
290319996 - 财政年份:
- 资助金额:
-- - 项目类别:
CRC/Transregios