Spin Orbitronics: Interfacial Design of Spintronic Materials and Devices
自旋轨道电子学:自旋电子材料和器件的界面设计
基本信息
- 批准号:1408172
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The remarkable advances in computing and communications technologies in recent decades have been based on conventional electronics whose fundamental limits are rapidly being approached. In order to meet the demands for future low-power, high-performance memory and logic devices, new physical mechanisms and advanced materials that exploit them are urgently required. A promising approach is to harness the electron spin degree of freedom in a paradigm widely known as spintronics. The key to realizing spintronics technologies is the capability to efficiently manipulate the electron spin in nanoscale devices. This research program seeks a fundamental understanding of exciting new phenomena that emerge at interfaces between magnetic and nonmagnetic materials, which offer powerful new mechanisms to manipulate electron spins. The fundamental research will have broad technological impact by enabling new classes of spintronic devices for ultralow-power, high-performance computation and mass data storage, significantly impacting mobile computing and global energy efficiency. The program will train undergraduate and graduate students in advanced nanotechnologies, and provide enrichment through international collaborations. Research, education, and outreach are highly integrated by teaming graduate students with undergraduates, local high school teachers and underrepresented students. Educational media including instructional laboratory modules and course materials will be developed and disseminated broadly using the MITx/EdX online educational platform. This research program will provide a fundamental understanding of unconventional current-induced torques and chiral spin textures that arise in ultrathin ferromagnetic heterostructures with broken inversion symmetry and strong spin-orbit coupling. The program aims to (1) quantitatively and systematically characterize spin-orbit torques in ferromagnet/heavy metal bilayers to identify their dependence on interface materials and structure, (2) provide a mechanistic understanding of magnetization switching and magnetic domain wall motion in the presence of strong spin-orbit coupling, and (3) establish the materials design principles necessary to optimize these phenomena for spintronic devices. Experiments focus on transition metals and alloys that order well above room temperature, interfaced with nonmagnetic heavy metals and oxide dielectrics that are amenable to integration with conventional semiconductor fabrication processes. The intellectual merits of these fundamental studies include important new insights into surface and interface magnetism, the quantum-mechanical effects of broken symmetries in nanoscale systems, and coupling between the charge and spin degrees of freedom. The fundamental studies will lead to revolutionary new spin-based memory and logic device capabilities, offering enhanced performance and durability with ultralow power consumption requirements.
近几十年来,计算和通信技术的显著进步是基于传统电子技术,而传统电子技术的基本极限正在迅速接近。 为了满足未来低功耗、高性能存储器和逻辑器件的需求,迫切需要开发新的物理机制和先进的材料。 一个很有前途的方法是利用电子自旋自由度在一个范式广泛称为自旋电子学。 实现自旋电子学技术的关键是能够有效地操纵纳米器件中的电子自旋。 该研究项目旨在从根本上了解磁性和磁性材料之间界面上出现的令人兴奋的新现象,这些新现象提供了操纵电子自旋的强大新机制。 基础研究将通过使新型自旋电子器件实现超低功耗,高性能计算和大容量数据存储,从而对移动的计算和全球能源效率产生广泛的技术影响。 该计划将培养本科生和研究生在先进的纳米技术,并通过国际合作提供丰富。 研究,教育和推广是高度一体化的团队研究生与本科生,当地高中教师和代表性不足的学生。 将利用MITx/EdX在线教育平台开发和广泛传播教育媒体,包括教学实验室模块和课程材料。这项研究计划将提供一个非常规的电流引起的扭矩和手性自旋纹理,出现在铁磁异质结构与破坏反转对称性和强自旋轨道耦合的基本理解。 该计划旨在(1)定量和系统地表征铁磁体/重金属双层膜中的自旋轨道扭矩,以确定其对界面材料和结构的依赖性,(2)提供对强自旋轨道耦合存在下磁化切换和磁畴壁运动的机械理解,以及(3)建立优化自旋电子器件这些现象所需的材料设计原则。实验重点是过渡金属和合金,秩序远远高于室温,界面的重金属和氧化物的可接受的集成与传统的半导体制造工艺。 这些基础研究的智力价值包括对表面和界面磁性的重要新见解,纳米尺度系统中对称性破坏的量子力学效应,以及电荷和自旋自由度之间的耦合。 基础研究将带来革命性的新自旋存储器和逻辑器件功能,提供增强的性能和耐用性以及超低功耗要求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey Beach其他文献
Beyond the speed limit
超过限速
- DOI:
10.1038/nmat2909 - 发表时间:
2010-11-23 - 期刊:
- 影响因子:38.500
- 作者:
Geoffrey Beach - 通讯作者:
Geoffrey Beach
Growth-Induced Order by Site-Preference in Anisotropic Mixed Rare-Earth Iron Garnet Thin Films
各向异性混合稀土铁石榴石薄膜中按位点偏好生长诱导的有序性
- DOI:
10.1109/intermagshortpapers58606.2023.10228723 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Allison Kaczmarek;Ethan Rosenberg;Yixuan Song;Aubrey Penn;Geoffrey Beach;Caroline Ross - 通讯作者:
Caroline Ross
Geoffrey Beach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey Beach', 18)}}的其他基金
Development of a Ferrimagnetic Terahertz Oscillator
亚铁磁太赫兹振荡器的研制
- 批准号:
2232830 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
PFI-TT: Development of a new patterning system for accelerated innovation and advanced manufacturing of microchips
PFI-TT:开发新的图案化系统,以加速微芯片的创新和先进制造
- 批准号:
2141118 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Electrical switching of magnetic devices by voltage-controlled proton insertion for low-power, high-performance data storage and computing
通过压控质子插入对磁性器件进行电切换,以实现低功耗、高性能数据存储和计算
- 批准号:
1808828 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
MIT Materials Research Science and Engineering Center - Full Proposal
麻省理工学院材料研究科学与工程中心 - 完整提案
- 批准号:
1419807 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Cooperative Agreement
Electric Field Control of Spin Dynamics in Metal Spintronic Devices
金属自旋电子器件中自旋动力学的电场控制
- 批准号:
1128439 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Spin-orbitronics in quantum materials for energy-efficient neuromorphic computing
RII Track-4:NSF:量子材料中的自旋轨道电子学用于节能神经形态计算
- 批准号:
2229498 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Nano-spintronics and orbitronics innovated by photoelectron microscopy
光电子显微镜创新的纳米自旋电子学和轨道电子学
- 批准号:
19KK0137 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Spin-orbitronics in oxides
氧化物中的自旋轨道电子学
- 批准号:
18K14111 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Spin-orbitronics in epitaxial CuMnSb/NiMnSb half-Heusler heterostructures
外延 CuMnSb/NiMnSb 半赫斯勒异质结构中的自旋轨道电子学
- 批准号:
397861849 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Research Grants
Magnetic Skyrmion for Nonvolatile Low-Power Spin-Orbitronics Applications
用于非易失性低功耗自旋轨道电子学应用的磁性斯格明子
- 批准号:
1611570 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Spin-orbitronics and device application
自旋轨道电子学及器件应用
- 批准号:
15H05702 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Specially Promoted Research
Computational design and modeling of topological insulator-based heterostructures for spin-orbitronics and skyrmionics
用于自旋轨道电子学和斯格明子学的基于拓扑绝缘体的异质结构的计算设计和建模
- 批准号:
1509094 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Spin+Orbit Coupling: Orbitronics and spin-orbit effects (A01)
自旋轨道耦合:轨道电子学和自旋轨道效应 (A01)
- 批准号:
290319996 - 财政年份:
- 资助金额:
$ 36万 - 项目类别:
CRC/Transregios














{{item.name}}会员




