Highly structured optical materials based on protein containers and plasmonic nanoparticles for the manipulation of light at the nanoscale
基于蛋白质容器和等离子体纳米粒子的高度结构化光学材料,用于在纳米尺度上操纵光
基本信息
- 批准号:401323995
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, a synthetic strategy towards optical materials will be established using protein containers and nanoparticles. The artificially assembled materials will be able to manipulate light at the nanoscale, which is important in metamaterials and for applications such as sensing, plasmon optics or light harvesting. To this end, plasmonic gold nanoparticles and quantum dots will be arranged into highly structured plasmonic and energy-transfer materials. Currently, major challenges in nanoparticle material fabrication are low-order assembly, small domain sizes and long interparticle distances. These limitations will be overcome by using protein containers as an atomically precise ligand shell. With protein containers as building blocks, nanoparticles will be assembled with high precision into mesoscale materials with optical properties that emerge from interactions between the components. With the recent advances in computational redesign of protein containers, it is now possible to combine these results with nanoparticle synthesis and protein crystallography in a highly interdisciplinary fashion. A new type of protein-based material will be realized by using an innovative design approach with two oppositely charged protein containers as building blocks. Binary nanoparticle superlattices with two different types of nanoparticles will be generated. For energy-transfer materials, fluorescent quantum dots will be co-assembled with plasmonic nanoparticles to enable energy transfer between the particles. The hybrid protein-nanoparticle materials will have a high nanoparticle content and display short interparticle distances (<10 nm, below the particle diameter). This is essential for emergent properties based on strong near-field interactions such as plasmonic coupling between the particles, but difficult to achieve with current approaches due to spacious linker materials. Because the protein scaffold is independent of the nanoparticle cargo, this modular approach, together with the binary nature of the materials, will enable tuning of the optical properties by choice of nanoparticle content, assembly type and protein container type. The proposed project will make a significant contribution to the synthesis and characterization of optical materials based on plasmonic nanoparticles and quantum dots and will provide improved understanding of light-matter interactions at the nanoscale for such systems. Furthermore, materials with plasmonic or energy-transfer properties have potential application as plasmonic waveguides or nanoscopic lasers (spasers) for manipulation of light signals at the nanoscale.
在该项目中,将使用蛋白质容器和纳米颗粒建立光学材料的合成策略。人工组装的材料将能够在纳米尺度上操纵光,这在超材料和传感、等离子体光学或光收集等应用中非常重要。为此,等离子体金纳米粒子和量子点将被排列成高度结构化的等离子体和能量转移材料。目前,纳米颗粒材料制备的主要挑战是低阶组装、小畴尺寸和长颗粒间距离。这些限制将通过使用蛋白质容器作为原子精确的配体壳来克服。以蛋白质容器作为构建模块,纳米颗粒将以高精度组装成具有光学特性的中尺度材料,这些光学特性来自组分之间的相互作用。随着蛋白质容器的计算重新设计的最新进展,现在可以将这些结果与纳米颗粒合成和蛋白质晶体学以高度跨学科的方式结合联合收割机。一种新型的基于蛋白质的材料将通过使用两个带相反电荷的蛋白质容器作为构建块的创新设计方法来实现。将产生具有两种不同类型的纳米颗粒的二元纳米颗粒超晶格。对于能量转移材料,荧光量子点将与等离子体纳米粒子共同组装,以实现粒子之间的能量转移。混合蛋白质-纳米颗粒材料将具有高纳米颗粒含量并显示短的颗粒间距离(<10 nm,低于粒径)。这对于基于强近场相互作用(例如粒子之间的等离子体激元耦合)的涌现性质是必不可少的,但由于宽敞的连接体材料,目前的方法难以实现。由于蛋白质支架独立于纳米颗粒货物,这种模块化方法以及材料的二元性质将能够通过选择纳米颗粒含量、组装类型和蛋白质容器类型来调整光学性质。 拟议的项目将对基于等离子纳米颗粒和量子点的光学材料的合成和表征做出重大贡献,并将为此类系统提供对纳米尺度下光物质相互作用的更好理解。此外,具有等离子体或能量传递性质的材料具有作为等离子体波导或纳米级激光器(spaser)的潜在应用,用于在纳米级操纵光信号。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Tobias Beck其他文献
Professor Dr. Tobias Beck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Elucidating Non-Routine Events Arising from Interhospital Transfers
阐明院间转移引起的非常规事件
- 批准号:
10749448 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Sub-2-cycle structured light pulses and their application to all-optical control of magnetism
亚2周期结构光脉冲及其在磁全光控制中的应用
- 批准号:
578518-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Spatial entanglement transfer using conventional single mode fiber network
使用传统单模光纤网络进行空间纠缠传输
- 批准号:
21K14549 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acid-Sensing Ion Channel gating: Conformations and Consequences
酸敏感离子通道门控:构象和后果
- 批准号:
10027391 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Improved Glaucoma Monitoring Using Artificial-Intelligence Enabled Dashboard
使用人工智能仪表板改进青光眼监测
- 批准号:
10043768 - 财政年份:2020
- 资助金额:
-- - 项目类别:
An Integrated Software Platform for Accelerating Image-Driven Ophthalmic Research and Driving New Insights and Endpoints to the Clinic
一个集成软件平台,用于加速图像驱动的眼科研究并为临床带来新的见解和终点
- 批准号:
9908389 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Optimization and dissemination of non-linear Acousto-Optic Lens two-photon microscopy for high speed multiscale 3D imaging
用于高速多尺度 3D 成像的非线性声光透镜双光子显微镜的优化和推广
- 批准号:
10005501 - 财政年份:2019
- 资助金额:
-- - 项目类别:
LED & CMOS Structured Light Systems for Multi-modal Optical Lithography
引领
- 批准号:
2189676 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship