Nonequilibrium quantum dynamics of current-driven magnetic skyrmions

电流驱动的磁斯格明子的非平衡量子动力​​学

基本信息

项目摘要

The topological protection of magnetic Skyrmions renders them interesting candidates for the reliable processing of information in technological racetrack devices. Skyrmions are vortex-like spin textures with non-collinear magnetization that can be formed in non-centrosymmetric magnetic compounds. They are viewed as quasiparticles that are rather stable, can be small in size down to the atomic scale and can be moved by low densities of spin-polarized electronic currents. Their formation and their control are nontrivial dynamical processes (due to topological protection) and require nonequilibrium processes involving dissipation, as we have described in the previous funding period. Moreover, their dynamics in the presence of impurity clusters shows a variety of phenomena described in the report. While well advanced dynamical simulations have been carried out in the past, we intend in the coming funding period to address the question of the dynamical stability of Skyrmions and Antiskyrmions in terms of a potential energy landscape in the presence of an external current as a function of suitable deformation parameters. We aim to obtain a Kramers rate theory for the stability of the Skyrmions. Furthermore, we will turn our focus to antiferromagnetic Skyrmions which are interesting because in addition to the mentioned features of Skyrmions, an antiferromagnetic host with zero total magnetization is magnetically rather inert, yet on the cost that an external manipulation by a current is non-trivial. Especially the presence of a current which drives the system away from its groundstate motivates a theoretical description of the antiferromagnet beyond mean-field theory for two coupled ferromagnetic sublattices. We plan to develop such a theory of current-driven antiferromagnetic Skyrmions beyond mean-field theory by extending the latter by spin-wave fluctuations. We foresee novel contributions to the spin transfer torque. Moreover, we shall study real quantum Skyrmions formed by quantum spins residing at the lattice sites. We intend to extend our preliminary quantum simulations, addressing the questions of stability and the interplay of quantum mechanics with the classical concept of topology. Finally, we plan to investigate the dynamics of magnetic Skyrmions driven by circular spin waves from point-like emitters. This concept is technologically relevant for potential devices and is also studied experimentally in the project of Dr. Stefan Krause (Universität Hamburg) with whom we plan to collaborate in the present Priority Programme.
磁性Skyrmions的拓扑保护使它们成为在技术赛道设备中可靠处理信息的有趣候选者。Skyrmion是一种具有非共线磁化的涡旋状自旋织构,可以在非中心对称的磁性化合物中形成。它们被视为相当稳定的准粒子,可以小到原子尺度,并且可以通过低密度的自旋极化电子流移动。它们的形成和控制是非平凡的动力学过程(由于拓扑保护),需要涉及耗散的非平衡过程,正如我们在上一个资助期所述。此外,它们在杂质团簇存在下的动力学显示了报告中描述的各种现象。虽然在过去已经进行了先进的动力学模拟,我们打算在未来的资助期间,以解决的Skyrmions和Antiskyrmions的动力学稳定性的问题,在一个潜在的能源景观在存在的外部电流作为适当的变形参数的函数。我们的目标是获得一个Kramers率理论的Skyrmions的稳定性。此外,我们将把我们的重点放在反铁磁Skyrmions,这是有趣的,因为除了提到的Skyrmions的功能,一个反铁磁主机与零总磁化是磁性相当惰性,但在成本上,外部操纵电流是不平凡的。特别是电流的存在,驱动系统远离其基态激发了反铁磁体的理论描述超出平均场理论的两个耦合铁磁子晶格。我们计划发展这样一个理论的电流驱动的反铁磁Skyrmions超越平均场理论,通过扩展后者的自旋波波动。我们预见新的贡献的自旋转移力矩。此外,我们还将研究驻留在晶格位置的量子自旋所形成的真实的量子Skyrmions。我们打算扩展我们的初步量子模拟,解决稳定性和量子力学与经典拓扑概念的相互作用的问题。最后,我们计划研究由点状发射体的圆形自旋波驱动的磁性Skyrmions的动力学。这一概念在技术上与潜在的设备相关,并且在Stefan Krause博士(汉堡大学)的项目中也进行了实验研究,我们计划与他合作开展本优先计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Wolfgang Häusler其他文献

Privatdozent Dr. Wolfgang Häusler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
高温气化过程中煤灰矿物质演变规律的量子化学计算与实验研究
  • 批准号:
    50906055
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
广义Besov函数类上的几个逼近特征
  • 批准号:
    10926056
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
基于量子点多色荧光细胞标志谱型的CTC鉴别与肿瘤个体化诊治的研究
  • 批准号:
    30772507
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
驻波场驱动的量子相干效应的研究
  • 批准号:
    10774058
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
量子计算电路的设计和综合
  • 批准号:
    60676020
  • 批准年份:
    2006
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
半导体物理中的非线性偏微分方程组
  • 批准号:
    10541001
  • 批准年份:
    2005
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目
量子点技术对细胞表面蛋白和受体在体内分布的研究
  • 批准号:
    30570686
  • 批准年份:
    2005
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: New Regimes of Coherent Nonequilibrium Dynamics in Quantum Many-Body Systems
职业:量子多体系统中相干非平衡动力学的新机制
  • 批准号:
    2143635
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonequilibrium Dynamics and Site-Resolved Imaging in a Three-Dimensional Spinor Bose-Hubbard Model Quantum Simulator
三维旋量玻色-哈伯德模型量子模拟器中的非平衡动力学和位点分辨成像
  • 批准号:
    2207777
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Controlled nonequilibrium dynamics of quantum matter and machines
职业:量子物质和机器的受控非平衡动力学
  • 批准号:
    1945395
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
  • 批准号:
    2037996
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
  • 批准号:
    2038028
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Topology in Nonequilibrium Quantum Many-Body Dynamics
非平衡量子多体动力学中的拓扑
  • 批准号:
    419241108
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Study of nonequilibrium dynamics of integrable quantum systems in association with the relaxation of isolated quantum systems and the dynamical quantum phase transition of the many-body localization
可积量子系统的非平衡动力学研究与孤立量子系统的弛豫和多体局域化的动态量子相变相关
  • 批准号:
    18K03450
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical study on the nonequilibrium dynamics and the quantum transport phenomena of topological magnetic textures
拓扑磁织构非平衡动力学和量子输运现象的理论研究
  • 批准号:
    17H02924
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel nonequilibrium dynamics of quantum degenerate gas exploited by spatiotemporal control of scattering length
通过散射长度的时空控制开发量子简并气体的新型非平衡动力学
  • 批准号:
    17H02938
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Nonequilibrium charge dynamics in quantum Hall edge channels
量子霍尔边缘通道中的非平衡电荷动力学
  • 批准号:
    26247051
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了