Design of a computational platform and study of superconductivity in novel rolled-up nanostructures

计算平台的设计和新型卷状纳米结构超导性的研究

基本信息

项目摘要

Hybridization of reduced dimensionality with nontrivial geometry and topology in complex tree-dimensional superconductor structures fabricated using the strain-driven roll-up technology is a rich source of new superconductivity physics. The project is devoted to the design of a computational platform and its application for theoretical study of transport properties of novel rolled-up superconductor micro- and nanoarchitectures. The proponent possesses recognized expertise in theory of superconductor micro- and nanostructures based on the time-dependent Ginzburg-Landau equation and the numerical methods. The planned collaborators provide complementary competence: in large-scale computer simulations for multiphysics mathematical model (TPU Tomsk) and high-tech fabrication – strain-driven roll-up technology and experimental characterization (IIN IFW Dresden). A full three-dimensional numerical platform preserving the gauge invariance and including self-action and thermal effects in superconductor nanostructures will be developed. New regimes of vortex dynamics and transport are expected to occur due to the inductive coupling of vortices. The planned supercomputer simulations help in making experimental characterization of nanostructures less labor- and time-consuming. The transport mechanisms in the superconductor rolled-up structures will be identified and the stochastic effects in the Voltage-Current characteristics, originating from fluctuations of the transport current, the heating effect on the temperature and inhomogeneities will be investigated. The present project is aimed at getting insight in the superconducting phenomena in advanced nanoarchitectures and developing application-oriented design of their transport properties. The key goals of the present project are pertinent to the combined advancements for nanophysics, nanotechnology, fundamental science and applicative scope, e.g., for development of innovative microelectronic and fluxonic elements.
在使用应变驱动卷起技术制造的复杂三维超导体结构中,降维与非平凡几何和拓扑的混合是新的超导物理的丰富来源。该项目致力于设计一个计算平台,并将其应用于新型卷起超导体微纳米结构的输运性质的理论研究。提出者拥有公认的专业知识,在理论上的超导体微观和纳米结构的基础上,时间依赖的金斯堡-朗道方程和数值方法。计划中的合作者提供互补能力:多物理场数学模型的大规模计算机模拟(TPU托木斯克)和高科技制造-应变驱动的卷起技术和实验表征(IIN IFW德累斯顿)。一个完整的三维数值平台保持规范不变,包括超导体纳米结构的自作用和热效应将被开发。由于涡旋的感应耦合,预计将出现新的涡旋动力学和传输机制。计划中的超级计算机模拟有助于减少纳米结构的实验表征的劳动力和时间消耗。在超导体卷起的结构中的传输机制将被确定,并在电压-电流特性的随机效应,起源于传输电流的波动,对温度和不均匀性的加热效应将被调查。本项目旨在深入了解先进纳米结构中的超导现象,并开发其输运性质的面向应用的设计。本项目的主要目标是与纳米物理学、纳米技术、基础科学和应用范围的综合进步有关,例如,用于开发创新的微电子和磁通元件。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Voltage Induced by Superconducting Vortices in Open Nanostructured Microtubes
开放纳米结构微管中超导涡旋感应的电压
Three-Dimensional Superconducting Nanohelices Grown by He+-Focused-Ion-Beam Direct Writing
  • DOI:
    10.1021/acs.nanolett.9b03153
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Cordoba, Rosa;Mailly, Dominique;Maria De Teresa, Jose
  • 通讯作者:
    Maria De Teresa, Jose
Simulation of dynamics of the order parameter in superconducting nanostructured materials: Effect of the magnetic field renormalization
超导纳米结构材料中有序参数的动力学模拟:磁场重整化的影响
  • DOI:
    10.1063/10.0000862
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    E. I. Smirnova;R. O. Rezaev;V. M. Fomin
  • 通讯作者:
    V. M. Fomin
Topological transitions in superconductor nanomembranes under a strong transport current
强输运电流下超导纳米膜的拓扑转变
  • DOI:
    10.1038/s42005-020-00411-4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    R.O. Rezaev;E.I. Smirnova;O.G. Schmidt;V.M. Fomin
  • 通讯作者:
    V.M. Fomin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Vladimir Fomin其他文献

Professor Dr. Vladimir Fomin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Vladimir Fomin', 18)}}的其他基金

Theoretical fundamentals of the emerging electronic phenomena in CUrved SupercONDuctor nanoArchitectures (CUSONDA)
弯曲超导体纳米结构中新兴电子现象的理论基础(CUSONDA)
  • 批准号:
    440761189
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spectroscopic characterization of multishell micro- and nanoarchitectures for nanophononics
纳米声学多壳微米和纳米结构的光谱表征
  • 批准号:
    394584160
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

物体运动对流场扰动的数学模型研究
  • 批准号:
    51072241
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing a computational platform for induced-fit and chemogenetic drug design
开发诱导拟合和化学遗传学药物设计的计算平台
  • 批准号:
    10680745
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
SBIR Phase II: An omics-based computational drug design and discovery platform for next generation microbiome therapeutics
SBIR II 期:基于组学的计算药物设计和发现平台,用于下一代微生物组疗法
  • 批准号:
    2228069
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Utility of adaptive design optimization for developing rapid and reliable behavioral paradigms for substance use disorders
利用自适应设计优化来开发快速可靠的药物滥用行为范例
  • 批准号:
    10637895
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
AI-Powered Biased Ligand Design
人工智能驱动的偏向配体设计
  • 批准号:
    10637910
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
  • 批准号:
    10705666
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
  • 批准号:
    10505034
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
D-novo minibinders: developing a high throughput platform for computational design and production of tailored synthetic proteins
D-novo minibinders:开发高通量平台,用于计算设计和定制合成蛋白质的生产
  • 批准号:
    2731538
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Structural modeling of neoantigen presentation for rational design of heteroclitic neoepitope vaccines
新抗原呈递的结构模型,用于合理设计异位新表位疫苗
  • 批准号:
    10463222
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A Feasibility Study of a High-Throughput Live-Cell Microscopy Design for Visualizing Viral Particle Action and Nano-Carrier Delivery Performance
用于可视化病毒颗粒作用和纳米载体传递性能的高通量活细胞显微镜设计的可行性研究
  • 批准号:
    10193517
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Computational design of novel protein binders based on structure mining and learning from data
基于结构挖掘和数据学习的新型蛋白质结合剂的计算设计
  • 批准号:
    10541909
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了