New-generation optimization algorithms for engineering
新一代工程优化算法
基本信息
- 批准号:21K17710
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Early-Career Scientists
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The candidate established a new collaboration with the University of British Columbia (CA), including in the discussion a PhD student under his co-supervision that resulted in the preprint [1]. In addition, he has been invited for visiting periods at the Tokyo Institute of Technology (December 2022), the University of Pisa (scheduled for May 2023), and the Chongqing Normal University (scheduled for August 2023). His research trend continues along the lines of the previous year, with additional focus on linesearch-free methods for convex optimization [2] and (convex) optimization for power-grid expansion planning [4]. As in the past, a first inquiry in the convex realm is meant to serve as foundation for potential nonconvex extensions, ultimate target of the proposal.[1] Z Wang, AT, H Ou, and X Wang. A mirror inertial forward-reflected-backward splitting: Global convergence and linesearch extension beyond convexity and Lipschitz smoothness, arXiv:2212.01504, 2022[2] P Latafat, AT, L Stella, and P Patrinos. Adaptive proximal algorithms for convex optimization under local Lipschitz continuity of the gradient, arXiv:2301.04431, 2023[3] S Hardy, AT, K Yamamoto, H Ergun, and D Van Hertem. Optimal grid layouts for hybrid offshore assets in the North Sea under different market designs, arXiv:2301.00931, 2023
候选人与不列颠哥伦比亚省(CA)大学建立了新的合作关系,其中包括在他的共同监督下的一名博士生的讨论,这导致了预印本[1]。此外,彼亦曾应邀访问东京工业大学(2022年12月)、比萨大学(计划于2023年5月)及重庆师范大学(计划于2023年8月)。他的研究趋势继续沿着前一年的路线,额外关注凸优化[2]和电网扩展规划[4]的(凸)优化的无线搜索方法。和过去一样,在凸领域的第一次调查是为了作为潜在的非凸扩展的基础,该提案的最终目标。[1]Z Wang,AT,H Ou和X Wang。镜面惯性前向反射后向分裂:全局收敛和超越凸性和Lipschitz光滑性的线性扩展,arXiv:2212.01504,2022[2] P Latafat,AT,L Stella和P Patrinos。自适应邻近算法在局部Lipschitz连续性梯度下的凸优化,arXiv:2301.04431,2023[3] S哈代,AT,K山本,H Ergun和D货车Hertem。不同市场设计下北海混合海上资产的最佳网格布局,arXiv:2301.00931,2023
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Bregman Forward-Backward Linesearch Algorithm for Nonconvex Composite Optimization: Superlinear Convergence to Nonisolated Local Minima
- DOI:10.1137/19m1264783
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Masoud Ahookhosh;Andreas Themelis;Panagiotis Patrinos
- 通讯作者:Masoud Ahookhosh;Andreas Themelis;Panagiotis Patrinos
Douglas-Peucker piecewise affine approximation of an optimal fuel consumption problem to apply PANOC
应用 PANOC 的最佳燃油消耗问题的 Douglas-Peucker 分段仿射近似
- DOI:10.23919/siceiscs54350.2022.9754372
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:H. Ou;A. Themelis;T. Yuno and T. Kawabe
- 通讯作者:T. Yuno and T. Kawabe
Flock navigation with dynamic hierarchy and subjective weights using nonlinear MPC
- DOI:10.1109/ccta49430.2022.9966067
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Aneek Nag;Shuo Huang;Andreas Themelis;Kaoru Yamamoto
- 通讯作者:Aneek Nag;Shuo Huang;Andreas Themelis;Kaoru Yamamoto
inertia and relative smoothness in nonconvex minimization a case study on the forward-reflected-backward algorithm
非凸最小化中的惯性和相对平滑度——前向反射后向算法的案例研究
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:M. Ahookhosh;A. Themelis;and P. Patrinos;Andreas Themelis
- 通讯作者:Andreas Themelis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Themelis Andreas其他文献
Themelis Andreas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Themelis Andreas', 18)}}的其他基金
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
相似海外基金
CAREER: Interplay between Convex and Nonconvex Optimization for Control
职业:凸和非凸优化控制之间的相互作用
- 批准号:
2340713 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
CAREER: From Shallow to Deep Representation Learning: Global Nonconvex Optimization Theories and Efficient Algorithms
职业:从浅层到深层表示学习:全局非凸优化理论和高效算法
- 批准号:
2143904 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Structured Stochastic Nonconvex Optimization
结构化随机非凸优化
- 批准号:
RGPIN-2021-02644 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Theory and algorithms for solving bilevel optimization and other important nonsmooth and/or nonconvex optimization problems
解决双层优化和其他重要的非光滑和/或非凸优化问题的理论和算法
- 批准号:
RGPIN-2018-03709 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Structured Stochastic Nonconvex Optimization
结构化随机非凸优化
- 批准号:
RGPIN-2021-02644 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Nonconvex Optimization for Statistical Estimation and Learning: Conditioning, Dynamics, and Nonsmoothness
职业:统计估计和学习的非凸优化:条件、动力学和非平滑性
- 批准号:
2047637 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Theory and algorithms for solving bilevel optimization and other important nonsmooth and/or nonconvex optimization problems
解决双层优化和其他重要的非光滑和/或非凸优化问题的理论和算法
- 批准号:
RGPIN-2018-03709 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Structured Stochastic Nonconvex Optimization
结构化随机非凸优化
- 批准号:
DGECR-2021-00046 - 财政年份:2021
- 资助金额:
$ 2万 - 项目类别:
Discovery Launch Supplement
Optimal First-Order Methods for Nonconvex Optimization Problems
非凸优化问题的最优一阶方法
- 批准号:
516700-2018 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Postgraduate Scholarships - Doctoral
Mathematical Analysis of Super-Resolution via Nonconvex Optimization and Machine Learning
通过非凸优化和机器学习进行超分辨率数学分析
- 批准号:
2009752 - 财政年份:2020
- 资助金额:
$ 2万 - 项目类别:
Standard Grant














{{item.name}}会员




