Robust Optimization for Resource Allocation in Cloud Providers
云提供商资源分配的稳健优化
基本信息
- 批准号:21K17733
- 负责人:
- 金额:$ 2.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Early-Career Scientists
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Three articles (one as the 1st author) have been accepted by high-level conferences; one article (1st author) has been published at a top-level journal. Three journal articles have been submitted. These works focused on resource allocation problems in different applications; it includes cloud computing and network function virtualization (NFV), where network failures and traffic uncertainty typically exist, which degrade the network performance.One work developed a backup computing and transmission resource allocation model against multiple node failures. Probabilistic protection is provided for computing resource to reduce the required computing capacity. It analyzed backup transmission resource sharing in the case of multiple failures to compute the minimum required backup transmission capacity. With our analyses, a network operator can set an appropriate degree of backup transmission resource sharing based on practical requirements. For future extensions, we plan to apply probabilistic protection for both computing and transmission resources to further reduce the required network resources.Another work introduced a robust optimization model to handle the traffic uncertainty for service deployment in NFV. It provided different approaches to solve the deployment problem. Based on it, a network operator can develop services against traffic uncertainty in a cost-efficient way. For future work, we plan to address a more accurate model to further reduce the deployment cost introduced by conservative approximation in the current one.
3篇文章(1篇为第一作者)已被高级别会议接受; 1篇文章(第一作者)已在顶级期刊上发表。已提交三篇期刊文章。这些工作集中在不同的应用程序中的资源分配问题,它包括云计算和网络功能虚拟化(NFV),其中网络故障和流量的不确定性通常存在,这会降低网络性能。为计算资源提供概率保护,以减少所需的计算能力。分析了多故障情况下的备用传输资源共享问题,计算出所需的最小备用传输容量。通过我们的分析,网络运营商可以根据实际需求设置适当程度的备份传输资源共享。在未来的扩展中,我们计划对计算和传输资源应用概率保护,以进一步减少所需的网络资源。另一项工作引入了一个鲁棒的优化模型来处理NFV中服务部署的流量不确定性。它提供了不同的方法来解决部署问题。在此基础上,网络运营商可以以具有成本效益的方式开发针对流量不确定性的服务。对于未来的工作,我们计划解决一个更准确的模型,以进一步减少部署成本所引入的保守近似在当前的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Service Deployment on Shared Virtual Network Functions with Flow Partition
- DOI:10.1109/icc45855.2022.9838826
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Jingxiong Zhang;Fujun He;E. Oki
- 通讯作者:Jingxiong Zhang;Fujun He;E. Oki
Robust Virtual Network Function Deployment against Uncertain Traffic Arrival Rates
针对不确定流量到达率的稳健虚拟网络功能部署
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Naoki Kobayashi;Tsutomu Hirao;Hidetaka Kamigaito;Manabu Okumura and Masaaki Nagata;F. He and E. Oki
- 通讯作者:F. He and E. Oki
Research Introduction
研究简介
- DOI:10.32286/00028154
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ikuo Keshi;Ryota Daimon;Atsushi Hayashi;林 貴宏
- 通讯作者:林 貴宏
Robust Function Deployment against Uncertain Recovery Time with Workload-Dependent Failure Probability
针对恢复时间不确定且故障概率与工作负载相关的稳健功能部署
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:M. Zhu;F. He;and E. Oki
- 通讯作者:and E. Oki
Backup Allocation Model With Probabilistic Protection for Virtual Networks Against Multiple Facility Node Failures
为虚拟网络提供针对多个设施节点故障的概率保护的备份分配模型
- DOI:10.1109/tnsm.2021.3075458
- 发表时间:2021
- 期刊:
- 影响因子:5.3
- 作者:酒井 大史;今井 祐記;Fujun He; Eiji Oki
- 通讯作者:Fujun He; Eiji Oki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HE FUJUN其他文献
HE FUJUN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Next Generation Online Resource Allocation
职业:下一代在线资源分配
- 批准号:
2340306 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Standard Grant
Malleability in resource allocation for improved system efficiency in high-performance computing
资源分配的可塑性可提高高性能计算的系统效率
- 批准号:
EP/Y53061X/1 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Research Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
- 批准号:
2226901 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Standard Grant
CICI: UCSS: Trusted Resource Allocation in Volunteer Edge-Cloud Computing Workflows
CICI:UCSS:志愿者边缘云计算工作流程中的可信资源分配
- 批准号:
2232889 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Standard Grant
Reliable Resource Allocation Models and Management System with considering computing workload
考虑计算工作量的可靠资源分配模型和管理系统
- 批准号:
22KJ1945 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
- 批准号:
2226900 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Standard Grant
Federated Learning Based Resource Allocation in Internet of Vehicles
基于联邦学习的车联网资源分配
- 批准号:
2871416 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Studentship
Smart Task Offloading and Resource Allocation in Mobile Edge ComputingXXX (Ref:4659)
移动边缘计算中的智能任务卸载和资源分配XXX(参考:4659)
- 批准号:
2885594 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Studentship
Optimizing Resource Allocation through Data-Driven Patient Segmentation: A Machine Learning Approach to Enhance Outpatient and Home Transfusion Services
通过数据驱动的患者细分优化资源分配:增强门诊和家庭输血服务的机器学习方法
- 批准号:
493337 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Pandemic preparedness for underserved persons in the US: Harnessing data from the RADx-UP consortium to assess public health tools for resource allocation
美国服务不足人群的流行病防范:利用 RADx-UP 联盟的数据评估用于资源分配的公共卫生工具
- 批准号:
10881319 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别: