Ramified extensions of commutative ring spectra
交换环谱的分支扩展
基本信息
- 批准号:405031884
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theory of ramified extensions of rings of integers in number fields is a classical topic in algebraic number theory. In stable homotopy theory, ramified extensions of structured ring spectra occur for instance as connective covers of Galois extensions of commutative ring spectra. A systematic approach for studying ramification in stable homotopy theory is missing. The distinction of tame and wild ramification is rather ad hoc so far. The examples that were studied until now are mostly of chromatic type less or equal to one, i.e. these are extensions that concern singular homology and topological K-theory and variations of these. In this project I will study ramified extensions of chromatic type two or higher and using these examples I aim to develop a suitable notion of tamely ramified extensions. Important examples of such maps come from function spectra and spectra of topological modular forms. Besides ramification at prime numbers there might be ramification at higher chromatic primes. Technical means for studying ramified maps are homology theories such as topological Hochschild homology, topological Andre-Quillen homology together with their logarithmic versions.
数域上整数环的分歧扩张理论是代数数论中的一个经典课题。在稳定同伦理论中,结构环谱的分歧扩张例如作为交换环谱的伽罗瓦扩张的连接覆盖出现。一个系统的方法来研究分歧稳定同伦理论是缺失的。到目前为止,驯服和野性分支的区别是相当特殊的。到目前为止研究的例子大多是小于或等于1的色型,即这些是关于奇异同调和拓扑K-理论及其变体的扩展。在这个项目中,我将研究分歧扩大色类型2或更高,并使用这些例子,我的目标是发展一个合适的概念,驯服分歧扩大。这类映射的重要例子来自函数谱和拓扑模形式的谱。除了在素数上的分歧之外,还可能有在高色素数上的分歧。研究分歧映射的技术手段是同调理论,如拓扑Hochschild同调,拓扑Andre-Quillen同调及其对数形式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Birgit Richter其他文献
Professorin Dr. Birgit Richter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Birgit Richter', 18)}}的其他基金
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332468 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical analyses on one-bit secret sharing schemes and their extensions
一位秘密共享方案及其扩展的数学分析
- 批准号:
23K10979 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multivariable and Higher order extensions of discrete Painlev\'e equaitons
离散 Painlev 方程的多变量和高阶扩展
- 批准号:
23K03173 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: characterizing and optimizing extensions of LCDM
RUI:表征和优化 LCDM 的扩展
- 批准号:
2308173 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Rationally designed ribozymes switched-on by nucleotide repeat extensions as potential tools of genetic therapy for repeat expansion disorders.
合理设计的核酶通过核苷酸重复延伸开启,作为重复扩张疾病基因治疗的潜在工具。
- 批准号:
479481 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Assessing Tele-Health Outcomes in Multiyear Extensions of Parkinson's Disease Trials-2 (AT-HOME PD-2)
评估帕金森病多年扩展试验中的远程医疗结果 Trials-2 (AT-HOME PD-2)
- 批准号:
10658165 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The essential roles of primary cilia in heterotopic ossification
初级纤毛在异位骨化中的重要作用
- 批准号:
10734116 - 财政年份:2023
- 资助金额:
-- - 项目类别: