Dose Reduction in brain perfusion SPECT Using Deep Learning
使用深度学习减少脑灌注 SPECT 剂量
基本信息
- 批准号:22K15842
- 负责人:
- 金额:$ 2.25万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Early-Career Scientists
- 财政年份:2022
- 资助国家:日本
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
本研究の目的は,以下の2つである.1)SPECT(Single-Photon Emission Computed Tomography)において,Deep Learning(DL)を使用した画像復元技術を適用することで,低画質な低投与量の画像から通常の高投与量の画像を復元するためのDLネットワークを構築すること.2)構築したDLネットワークを用いて,投与量の低減がどの程度可能かを解明すること.もし投与量の低減が可能となれば,被ばく線量の低減だけでなく,医療費の削減にもつながる.また,この技術は全てのSPECT検査に適用可能となるため,その影響は非常に大きいと考える.ただし,DLによる画像復元を用いる場合,精度の悪い検査結果が得られる可能性があるため,本研究では,DLによって復元された画像を使用した場合の検査結果の十分な確認を行う必要がある.これらの事柄を考慮し,最終的な研究結果の報告では,投与量低減の落とし所を適切に見極めることも非常に重要な要素となる.本年度は,まず1)に必要なデータ収集を進めながら,同時にDLの最適化も進めまた.目標のデータ数の確保にはまだいたっていないが,DLの最適化についてはおおよそ順調に進めることができた.また,これまでの研究の成果をまとめた論文(査読有り,オープンアクセス)も報告した.この論文では,通常の脳SPECT検査と比較して非常に短い検査時間で一部の検査結果を得ることができるDLの開発手法とその精度評価について報告した.単純なDLを使用し,高い精度の検査結果を得ることができ,臨床において重要な報告となったと考える.
The purpose of this study is to: 1) SPECT (Single-Photon Emission Computed Tomography), Deep Learning (DL), and image reconstruction techniques. 2) DL reconstruction. It is possible to reduce the amount of investment and the amount of medical expenses. This technique is applicable to all SPECT examinations, and its influence is very great. In this study, the accuracy of the results of the investigation was determined by the probability of using DL complex images. The final report of the results of the study is extremely important for reducing the amount of investment and for reducing the relevance of the study. This year, we will continue to improve the quality of our products. The number of goals and objectives is to ensure that the optimization of the DL is carried out in a timely manner. The results of this research are reported in the paper. In this paper, the normal SPECT examination and comparison, very short examination time, part of the examination results, development methods and accuracy evaluation report. The use of pure DL, high accuracy of the results of the investigation, clinical important reports.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
北 章延其他文献
北 章延的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Continuing Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Deep Learningを活用した超音波ガイドによる安全な静脈穿刺法の開発
利用深度学习的超声引导开发安全静脉穿刺方法
- 批准号:
24K13362 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MFB: Better Homologous Folding using Computational Linguistics and Deep Learning
MFB:使用计算语言学和深度学习更好的同源折叠
- 批准号:
2330737 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
深層学習(Deep learning)による骨転移検出AIモデルの開発と臨床応用
深度学习骨转移检测AI模型开发及临床应用
- 批准号:
24K18754 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deep Learningを活用した安静時心電図からの非侵襲的冠動脈疾患予測
使用深度学习通过静息心电图进行无创冠状动脉疾病预测
- 批准号:
24K19024 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Navigating Chemical Space with Natural Language Processing and Deep Learning
利用自然语言处理和深度学习驾驭化学空间
- 批准号:
EP/Y004167/1 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Research Grant
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
- 批准号:
2905946 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Studentship
Deep Learning with Limited Data for Battery Materials Design
电池材料设计中数据有限的深度学习
- 批准号:
EP/Y000552/1 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Research Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant