Inferring computational dynamics from neural measurements using deep recurrent neural networks

使用深度循环神经网络从神经测量中推断计算动力学

基本信息

项目摘要

In theoretical neuroscience, computational processes in the brain are often thought to be implemented in terms of the underlying stochastic neural system dynamics. Cognitive processes like working memory, decision making, interval timing, or thought sequences, have been described in terms of attractor states, probabilistic transitions between these, slow transients, or chains of saddle nodes, for instance. Consequently, from this point of view, for understanding the neural basis of cognition one should unravel the neural system dynamics that underlies behavioral performance and neural activity. However, neural dynamics are not directly observable but have to be inferred from a limited and noisy set of physiological measurements that usually probe only a few of the system’s degrees of freedom. It would therefore be of great value if one had methodological tools for (automatically) recovering the underlying neural dynamics from such ‘sparse’ physiological measurements. The central goal of the present proposal is to develop and validate such methods based on deep recurrent neural networks (RNN), and probe them on neurophysiological data.We have previously used a combination of delay embeddings and nonlinear basis expansions to extract from multiple single-unit (MSU) recordings essential dynamical properties and aspects of the flow, like convergence to putative semi-attracting states. More recently, we have developed a framework for statistical estimation of RNN models from experimental data. RNNs are computationally and dynamically universal in the sense that they can emulate and approximate any dynamical system, thus, in theory, are powerful enough to represent whatever neural dynamics and computational processes underlie the observed neural activity and behavior.Based on this previous and preliminary work, here we will tackle a number of important open issues: 1) Existing methods for statistical inference of (deep) RNN models do not scale very well with system size, yet this is very important for achieving good approximations to the dynamics and dealing with larger physiological data sets. Here we suggest several lines of methodological improvement. 2) More importantly, a systematic validation and comparison of various model architectures and training/inference algorithms on ground truth systems of differing biophysical complexity is still lacking, especially for experimentally realistic scenarios with comparatively sparse data from high-dimensional systems, which were only partially observed, and with high levels of both system-intrinsic and measurement noise. 3) As a case study for the usefulness of such methods, we will re-analyze MSU recordings from rat prefrontal cortex and hippocampus obtained during two different working memory tasks, to address specific issues about the (coupled) dynamics of these areas that were beyond the realm of previous analysis tools.
在理论神经科学中,大脑中的计算过程通常被认为是根据潜在的随机神经系统动力学来实现的。认知过程,如工作记忆、决策、间隔时间或思维序列,已经被描述为吸引子状态、这些状态之间的概率转换、慢瞬变或鞍节点链。因此,从这个角度来看,为了理解认知的神经基础,我们应该解开作为行为表现和神经活动基础的神经系统动力学。然而,神经动力学不是直接可观察的,而是必须从通常仅探测系统的几个自由度的有限且有噪声的生理测量集合中推断出来。因此,它将是非常有价值的,如果一个有方法的工具(自动)恢复基本的神经动力学从这样的“稀疏”的生理测量。本提案的中心目标是开发和验证基于深度递归神经网络(RNN)的此类方法,并在神经生理学数据上对其进行探测。我们之前使用了延迟嵌入和非线性基扩展的组合,从多个单单元(MSU)记录中提取基本的动力学特性和流的各个方面,例如收敛到假定的半吸引状态。最近,我们开发了一个框架,用于从实验数据中统计估计RNN模型。RNN在计算上和动态上是通用的,因为它们可以模拟和近似任何动力学系统,因此,在理论上,RNN足够强大,可以表示所观察到的神经活动和行为背后的任何神经动力学和计算过程。基于以前和初步的工作,这里我们将解决一些重要的开放问题:1)现有的(深度)RNN模型的统计推断方法不能很好地随系统大小扩展,但这对于实现良好的动态近似和处理更大的生理数据集非常重要。在这里,我们提出了几条改进方法的建议。2)更重要的是,仍然缺乏对不同生物物理复杂性的地面真实系统的各种模型架构和训练/推理算法的系统验证和比较,特别是对于具有来自高维系统的相对稀疏数据的实验现实场景,这些数据仅被部分观察到,并且具有高水平的系统固有和测量噪声。3)作为这种方法的有用性的案例研究,我们将重新分析MSU记录从大鼠前额叶皮层和海马在两个不同的工作记忆任务中获得,以解决这些领域的(耦合)动态超出了以前的分析工具的领域的具体问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Daniel Durstewitz其他文献

Professor Dr. Daniel Durstewitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Daniel Durstewitz', 18)}}的其他基金

Anpassung neuronaler Dynamiken an kognitive Erfordernisse - Dopaminerge Kontrolle kortikaler Aktivitätsregime
神经元动力学适应认知需求——皮质活动状态的多巴胺能控制
  • 批准号:
    166342266
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Professorships
Anpassung neuronaler Dynamiken an kognitive Erfordernisse - Dopaminerge Kontrolle kortikaler Aktivitätsregime
神经元动力学适应认知需求——皮质活动状态的多巴胺能控制
  • 批准号:
    80319670
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Anpassung neuronaler Dynamiken an kognitive Erfordernisse - Dopaminerge Kontrolle kortikaler Aktivitätsregime
神经元动力学适应认知需求——皮质活动状态的多巴胺能控制
  • 批准号:
    80299517
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Neural mechanisms of planning and problem solving in prefrontal cortex
前额叶皮层规划和解决问题的神经机制
  • 批准号:
    5288358
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Neural mechanisms of working memory in the prefrontal cortex and their regulation by dopamine
前额皮质工作记忆的神经机制及其多巴胺的调节
  • 批准号:
    5206292
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Reconstructing neuro-dynamical principles of prefrontal cortical computations across cognitive tasks and species
重建跨认知任务和物种的前额皮质计算的神经动力学原理
  • 批准号:
    465072828
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
Theoretical framework and bifurcation analysis for deep recurrent neural networks inferred from neural measurements
从神经测量推断的深度循环神经网络的理论框架和分岔分析
  • 批准号:
    502196519
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

物体运动对流场扰动的数学模型研究
  • 批准号:
    51072241
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
  • 批准号:
    10092420
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y00180X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y002466/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y002415/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Building a computational infrastructure for disclosing performance information of molecular dynamics software
构建用于公开分子动力学软件性能信息的计算基础设施
  • 批准号:
    23K11328
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Infrastructure for Automated Force Field Development and Optimization
用于自动力场开发和优化的计算基础设施
  • 批准号:
    10699200
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
  • 批准号:
    10785755
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Directed evolution of broadly fungible biosensors
广泛可替代生物传感器的定向进化
  • 批准号:
    10587024
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了