Theoretical framework and bifurcation analysis for deep recurrent neural networks inferred from neural measurements
从神经测量推断的深度循环神经网络的理论框架和分岔分析
基本信息
- 批准号:502196519
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In theoretical neuroscience, we construct mathematical models of neural circuits to gain insight into the computational principles and dynamical mechanisms underlying experimental measurements. Recent advances in deep learning may help to automatize this process to some degree: Rather than explicitly building a model which could explain the data based on the theoretician’s insights, we may train recurrent neural networks (RNNs) directly on data to reproduce, predict, or freely generate the observed recordings. While this is a promising approach to which our group has substantially contributed in the past years, it also comes with new challenges: Since such models were designed by an algorithm and not by ourselves, the analysis of their computational and dynamical properties is generally more demanding. Moreover, current RNN training algorithms usually assume that the underlying system is stationary (with parameters constant across time), an assumption that will often be violated in neuroscience, especially in tasks that require any form of learning or adaptive behavior. Allowing for adaptive parameter changes in RNNs (or any dynamical system), in turn, will lead to abrupt transitions in system dynamics at some critical points, so-called bifurcations. Bifurcations are hugely important both from a theoretical perspective as well as for explaining many observations in neural systems and psychiatry.The present proposal addresses these challenges: In WP1, we develop a mathematical framework for a special class of RNNs inferred from experimental data by deep learning, based on concepts from nonlinear dynamical systems and bifurcation theory. This framework will enable to open the “black box” and thoroughly characterize the dynamical behavior of empirically inferred RNNs within different parameter regimes, and thereby to deduce important computational and functional properties of the trained-on system itself. In WP2, we will extend existing RNN training algorithms to allow for parameter changes across time or experimental trials. This will enable, together with the planned mathematical advances in WP1, to thoroughly characterize bifurcations (and the specific type of bifurcation) in experimental data. In WP3 we will use the mathematical concepts and algorithms developed in WP1 and WP2 to address a long-standing (but still unresolved) hypothesis about rule learning in rodents: Through analysis of RNNs directly trained on neural recordings, we will test whether the empirically observed abrupt changes in neural population activity during learning of a new behavioral rule are indeed due to bifurcations. We will also check which type of bifurcation may underlie the observed neural activity changes, as this has important functional implications. The methods and concepts evolved here will be applicable in many scientific and engineering areas, far beyond neuroscience.
在理论神经科学中,我们构建神经回路的数学模型,以深入了解实验测量的计算原理和动力学机制。深度学习的最新进展可能有助于在某种程度上自动化这一过程:我们可以直接在数据上训练递归神经网络(RNN),而不是根据理论家的见解明确地构建一个可以解释数据的模型,以复制,预测或自由生成观察到的记录。虽然这是一种很有前途的方法,我们的团队在过去几年中做出了很大的贡献,但它也带来了新的挑战:由于这些模型是由算法而不是我们自己设计的,因此对其计算和动力学特性的分析通常要求更高。此外,当前的RNN训练算法通常假设底层系统是平稳的(参数随时间变化恒定),这一假设在神经科学中经常被违反,尤其是在需要任何形式的学习或自适应行为的任务中。反过来,允许RNN(或任何动态系统)中的自适应参数变化将导致系统动力学在某些临界点处的突然转变,即所谓的分叉。分叉无论是从理论角度还是解释神经系统和精神病学中的许多观察结果都非常重要。目前的建议解决了这些挑战:在WP 1中,我们基于非线性动力系统和分叉理论的概念,为通过深度学习从实验数据推断的一类特殊RNN开发了一个数学框架。该框架将能够打开“黑盒子”,并彻底表征不同参数范围内经验推断的RNN的动力学行为,从而推断出训练系统本身的重要计算和功能特性。在WP 2中,我们将扩展现有的RNN训练算法,以允许参数随时间或实验试验而变化。这将使,连同计划中的数学进步WP 1,彻底表征分叉(和具体类型的分叉)的实验数据。在WP3中,我们将使用WP1和WP2中开发的数学概念和算法来解决关于啮齿动物规则学习的一个长期存在的(但尚未解决的)假设:通过分析直接在神经记录上训练的RNN,我们将测试在学习新的行为规则过程中经验观察到的神经群体活动的突然变化是否确实是由于分叉。我们还将检查哪种类型的分叉可能是观察到的神经活动变化的基础,因为这具有重要的功能意义。这里发展的方法和概念将适用于许多科学和工程领域,远远超出神经科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Daniel Durstewitz其他文献
Professor Dr. Daniel Durstewitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Daniel Durstewitz', 18)}}的其他基金
Inferring computational dynamics from neural measurements using deep recurrent neural networks
使用深度循环神经网络从神经测量中推断计算动力学
- 批准号:
406070939 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Anpassung neuronaler Dynamiken an kognitive Erfordernisse - Dopaminerge Kontrolle kortikaler Aktivitätsregime
神经元动力学适应认知需求——皮质活动状态的多巴胺能控制
- 批准号:
166342266 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Heisenberg Professorships
Anpassung neuronaler Dynamiken an kognitive Erfordernisse - Dopaminerge Kontrolle kortikaler Aktivitätsregime
神经元动力学适应认知需求——皮质活动状态的多巴胺能控制
- 批准号:
80319670 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Anpassung neuronaler Dynamiken an kognitive Erfordernisse - Dopaminerge Kontrolle kortikaler Aktivitätsregime
神经元动力学适应认知需求——皮质活动状态的多巴胺能控制
- 批准号:
80299517 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Heisenberg Fellowships
Neural mechanisms of planning and problem solving in prefrontal cortex
前额叶皮层规划和解决问题的神经机制
- 批准号:
5288358 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Neural mechanisms of working memory in the prefrontal cortex and their regulation by dopamine
前额皮质工作记忆的神经机制及其多巴胺的调节
- 批准号:
5206292 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Fellowships
Reconstructing neuro-dynamical principles of prefrontal cortical computations across cognitive tasks and species
重建跨认知任务和物种的前额皮质计算的神经动力学原理
- 批准号:
465072828 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似海外基金
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
- 批准号:
10110559 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Law And Policy Framework For Remote Sensing In Maritime Enforcement
海事执法遥感法律和政策框架
- 批准号:
DP240100920 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
- 批准号:
DP240102053 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
NESP MaC Project 4.5– Developing an Integrated Pest Management Framework for Feral Pigs in Coastal Environments 2024-2026 (NAILSMA)
NESP MaC 项目 4.5 — 为 2024-2026 年沿海环境中的野猪制定综合害虫管理框架 (NAILSMA)
- 批准号:
global : ba1e00f0-9953-4c17-b990-ba7aed84ce07 - 财政年份:2024
- 资助金额:
-- - 项目类别:
An interdisciplinary analytical framework for high-mountain landslides and cascading hazards: implications for communities and infrastructure
高山滑坡和级联灾害的跨学科分析框架:对社区和基础设施的影响
- 批准号:
NE/Z503502/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Planning Grant: Developing capacity to attract diverse students to the geosciences: A public relations framework
规划补助金:培养吸引多元化学生学习地球科学的能力:公共关系框架
- 批准号:
2326816 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
- 批准号:
2337176 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
- 批准号:
2337991 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant