Reconstructing neuro-dynamical principles of prefrontal cortical computations across cognitive tasks and species

重建跨认知任务和物种的前额皮质计算的神经动力学原理

基本信息

项目摘要

The present consortium offers a unique and unprecedented opportunity to unravel neuro-dynamical and computational principles and mechanisms of higher cognitive functions across species, developmental stages, and cognitive domains. This project will exploit this opportunity and will attempt to uncover general computational principles through analyses of experimental data acquired by the other project partners from a unifying dynamical systems perspective, and within a common statistical machine learning framework. We will use deep generative recurrent neural networks (RNN) to approximate the dynamical systems underlying the experimental data. While RNNs in general have recently become a popular tool in neuroscience to study dynamical mechanisms, our methods go one step further and infer RNN parameters directly from the observed physiological and behavioral time series in a statistical, maximum-likelihood or Bayesian approach, yielding quantitative predictions. In collaboration with the experimental partners, we will deploy these methods established in our group to study the neural attractor dynamics of decision making, neuro-dynamical mechanisms underlying interval timing, species-specific neuro-computational mechanisms of working memory, and how these change with developmental stage. We will also address the long-standing question of whether similar or distinct neuro-computational principles underlie PFC-dependent performance on different cognitive tasks. In each of these instances, we propose a set of specific hypotheses about the underlying neuro-dynamical mechanisms that can be tested using our approach. Moreover, we will also generate specific (quantitative) novel predictions that will be fed back to the experimental partners. Furthermore, our RNNs are interpretable both from a dynamical systems perspective and in the sense that they enable to relate neural trajectories in state space to spatio-temporal activity patterns in the data. Hence, RNN trajectories map onto cell assemblies as studied in TP9, thus tightly linking these two theoretical approaches. Finally, we will integrate all findings into a common computational framework and theory of the neuro-dynamical principles underlying prefrontal flexibility.
目前的联盟提供了一个独特的和前所未有的机会,解开神经动力学和计算的原则和机制,更高的认知功能,跨物种,发展阶段和认知领域。该项目将利用这一机会,并试图通过分析其他项目合作伙伴从统一的动力系统角度获得的实验数据,并在一个共同的统计机器学习框架内,揭示一般的计算原理。我们将使用深度生成递归神经网络(RNN)来近似实验数据背后的动力系统。虽然RNN最近已经成为神经科学中研究动力学机制的流行工具,但我们的方法更进一步,直接从观察到的生理和行为时间序列中以统计,最大似然或贝叶斯方法推断RNN参数,产生定量预测。在与实验伙伴的合作中,我们将部署这些方法建立在我们的小组,以研究决策的神经吸引动力学,神经动力学机制的间隔时间,工作记忆的物种特异性神经计算机制,以及这些如何随着发展阶段的变化。我们还将解决一个长期存在的问题,即在不同的认知任务中,PFC依赖的表现是否基于相似或不同的神经计算原理。在这些情况下,我们提出了一套具体的假设,可以使用我们的方法进行测试的潜在的神经动力学机制。此外,我们还将产生具体的(定量的)新预测,这些预测将反馈给实验伙伴。此外,我们的RNN从动态系统的角度来看是可解释的,并且在某种意义上,它们能够将状态空间中的神经轨迹与数据中的时空活动模式相关联。因此,RNN轨迹映射到TP9中研究的细胞集合体上,从而将这两种理论方法紧密联系起来。最后,我们将把所有的发现整合到一个共同的计算框架和理论的神经动力学原则的基础前额叶的灵活性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Daniel Durstewitz其他文献

Professor Dr. Daniel Durstewitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Daniel Durstewitz', 18)}}的其他基金

Inferring computational dynamics from neural measurements using deep recurrent neural networks
使用深度循环神经网络从神经测量中推断计算动力学
  • 批准号:
    406070939
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Anpassung neuronaler Dynamiken an kognitive Erfordernisse - Dopaminerge Kontrolle kortikaler Aktivitätsregime
神经元动力学适应认知需求——皮质活动状态的多巴胺能控制
  • 批准号:
    166342266
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Professorships
Anpassung neuronaler Dynamiken an kognitive Erfordernisse - Dopaminerge Kontrolle kortikaler Aktivitätsregime
神经元动力学适应认知需求——皮质活动状态的多巴胺能控制
  • 批准号:
    80319670
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Anpassung neuronaler Dynamiken an kognitive Erfordernisse - Dopaminerge Kontrolle kortikaler Aktivitätsregime
神经元动力学适应认知需求——皮质活动状态的多巴胺能控制
  • 批准号:
    80299517
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Neural mechanisms of planning and problem solving in prefrontal cortex
前额叶皮层规划和解决问题的神经机制
  • 批准号:
    5288358
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Neural mechanisms of working memory in the prefrontal cortex and their regulation by dopamine
前额皮质工作记忆的神经机制及其多巴胺的调节
  • 批准号:
    5206292
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Theoretical framework and bifurcation analysis for deep recurrent neural networks inferred from neural measurements
从神经测量推断的深度循环神经网络的理论框架和分岔分析
  • 批准号:
    502196519
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

CAREER: A Neuro-Ophthalmic Approach to Virtual Reality Research
职业:虚拟现实研究的神经眼科方法
  • 批准号:
    2337976
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Neuro-Vascular Unitの構築を基盤とした、もやもや病の病態解明
基于神经血管单元的构建阐明烟雾病的病理学
  • 批准号:
    24K18427
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding Fundamental Mechanisms that Underlie Nano-Neuro Interactions
了解纳米神经相互作用的基本机制
  • 批准号:
    2331330
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Neuro-autonomic-sociocognitive interplay during human-android social bonding
人机社会联系过程中神经自主社会认知的相互作用
  • 批准号:
    24K06450
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Behind the barrier: using mathematics to understand the neuro-immune system
障碍背后:用数学来理解神经免疫系统
  • 批准号:
    DE240100650
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
  • 批准号:
    2338640
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Involvement of microglial GABA receptor and neuro-inflammatory TNF-a in fear memory formation
小胶质细胞 GABA 受体和神经炎症 TNF-a 参与恐惧记忆形成
  • 批准号:
    23K06978
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
  • 批准号:
    23K14813
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
iCare - Integrated assessment and Advanced Characterisation of Neuro-Nanotoxicity
iCare - 神经纳米毒性的综合评估和高级表征
  • 批准号:
    10068965
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Integrated assessment and Advanced Characterisation of Neuro-Nanotoxicity
神经纳米毒性的综合评估和高级表征
  • 批准号:
    10069445
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了