Dielectric nanoresonators and metasurfaces for photon pair generation

用于光子对生成的介电纳米谐振器和超表面

基本信息

项目摘要

Dielectric optical nanoresonators and metasurfaces constructed from such nanoresonators have been shown to enable control of light scattering, reflection and transmission. In structures with second-order nonlinearity, efficient second-harmonic generation can be used to generate classical light, with properties depending on the nanoresonators' geometry. The project nanoPAIR investigates whether such control is also possible over the quantum properties of nonclassical light generated in dielectric nanoresonators and metasurfaces. Specifically, it will investigate how the spectrum, spatial distribution, polarization, and entanglement of photon pairs generated by spontaneous parametric down-conversion (SPDC) depend on substrate materials, geometry of the nanoresonators, and their arrangement in metasurfaces.The optical properties of dielectric nanoresonators are governed by localized resonances, which can be described as superposition of multipoles and which define the local field profiles and emission directions of photons involved in SPDC. Using the multipole description, a systematic understanding of possible classical properties of the generated photon pairs, i.e. their polarization, spectrum, and emission direction, will be established based on the geometric dimensions, asymmetries, and nonlinear properties of single nanoresonators.By combining several similar nanoresonators in metasurfaces, we aim to enhance the efficiency of SPDC and obtain additional tuning parameters, e.g. lattice period mediating coupling between the nanoresonators, lattice symmetry, and orientation of nanoresonators with respect to the metasurface lattice.Understanding how to use these parameters to control SPDC will unlock the full potential of nonlinear metasurfaces for quantum state generation. We aim to achieve effective orthogonality of control parameters with respect to their influence on the properties of the photon pairs in order to realize almost arbitrary combinations of their polarization, direction, and spectrum, needed by particular applications.Our investigations will comprise analytical modelling and rigorous simulations of SPDC in nanostructures, realization of nanoresonators and metasurfaces in Aluminum Gallium Arsenide and Lithium Niobate as well as experimental verification of discovered effects.With our research, we will enable the use of metasurfaces as sources for photon pairs with a large number of spatial modes, where the properties of each mode can be tuned independently. This is notably different from other quantum source concepts allowing the generation of spatially-multimode photon pairs, e.g. bulk crystals, where the fixed crystal properties determine the possible modes that can be used. Hence, metasurfaces are promising candidates as sources for quantum-optic applications relying on many spatial modes, as e.g. high-resolution quantum imaging or free-space quantum communication with entangled vortex beams.
介电光学纳米谐振器和由这种纳米谐振器构造的超表面已经被示出能够控制光散射、反射和透射。在具有二阶非线性的结构中,有效的二次谐波产生可以用于产生经典光,其性质取决于纳米谐振器的几何形状。nanoPAIR项目研究了这种控制是否也可以控制介电纳米谐振器和超表面中产生的非经典光的量子特性。具体来说,它将研究自发参量下转换(SPDC)产生的光子对的光谱,空间分布,偏振和纠缠如何依赖于衬底材料,纳米谐振器的几何形状及其在超表面中的排列。介电纳米谐振器的光学特性受局域谐振控制,其可以被描述为多极的叠加,并且其限定了SPDC中涉及的光子的局部场分布和发射方向。利用多极子描述,基于单个纳米谐振器的几何尺寸、不对称性和非线性特性,我们将建立对所产生光子对的可能经典特性的系统理解,即它们的偏振、光谱和发射方向。通过在超颖表面上组合几个类似的纳米谐振器,我们的目标是提高SPDC的效率并获得额外的调谐参数,例如,介导纳米谐振器之间耦合的晶格周期、晶格对称性以及纳米谐振器相对于超颖表面晶格的取向。理解如何使用这些参数来控制SPDC将释放非线性超颖表面用于量子态生成的全部潜力。我们的目标是实现有效的正交性的控制参数相对于他们的影响的性质的光子对,以实现几乎任意组合的偏振,方向和光谱,所需的特定application.Our调查将包括分析建模和严格的模拟SPDC的纳米结构,在砷化铝镓和铌酸锂中实现纳米谐振器和超颖表面以及实验验证所发现的效果。通过我们的研究,我们将使得能够使用超颖表面作为具有大量空间模式的光子对的源,其中每个模式的属性可以被独立地调谐。这明显不同于允许产生空间多模光子对的其他量子源概念,例如块状晶体,其中固定的晶体性质确定可以使用的可能模式。因此,超颖表面是依赖于许多空间模式的量子光学应用的有希望的候选源,例如高分辨率量子成像或具有纠缠涡旋光束的自由空间量子通信。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Thomas Pertsch其他文献

Professor Dr. Thomas Pertsch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Thomas Pertsch', 18)}}的其他基金

Exploiting tailored disorder in dielectric nanosurfaces to maximize their information capacity
利用介电纳米表面的定制无序性来最大化其信息容量
  • 批准号:
    278747906
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Nichtlinieare plasmonische Nanoantennen aus Lithiumniobat
由铌酸锂制成的非线性等离子体纳米天线
  • 批准号:
    138526156
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Untersuchung der Kopplung dielektrischer und plasmonischer Resonanzen an optischen Metamaterialien in Wellenleitergeometrien
波导几何结构中光学超材料的介电共振和等离激元共振耦合研究
  • 批准号:
    64427569
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Exploring physical reservoir computing mechanisms by ultra-thin Si nanoresonators for enhancing computational reliability
通过超薄硅纳米谐振器探索物理储层计算机制以提高计算可靠性
  • 批准号:
    24K08219
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Near Field - Quantum Dot Coupling in Plasmonic Nanoresonators
近场 - 等离激元纳米谐振器中的量子点耦合
  • 批准号:
    2012656
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
Demonstration of nanoparticle upconvertion enhanced by nanoresonators
纳米谐振器增强纳米粒子上转换的演示
  • 批准号:
    448327-2013
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Engineered Nanoresonators for Third Order Nonlinear Optics
用于三阶非线性光学的工程纳米谐振器
  • 批准号:
    426518-2012
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Master's
Nonlinear coarse-graining of Graphene nanoresonators: realistic boundary conditions and the origin ofnonlinear damping
石墨烯纳米谐振器的非线性粗粒化:现实边界条件和非线性阻尼的起源
  • 批准号:
    217693948
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigating the System-Level Dynamics of Fully-Integrated CMOS-SOI Nanoresonators
研究全集成 CMOS-SOI 纳米谐振器的系统级动力学
  • 批准号:
    1233780
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of piezoelectric AlGaN/Si-nanoresonators for high frequency electroceramic sensors which can be integrated into semi-conductor devices
开发用于可集成到半导体器件中的高频电陶瓷传感器的压电 AlGaN/Si 纳米谐振器
  • 批准号:
    5412900
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Near-field Enhanced Optomechanical NAnoresonators – NEONA
近场增强型光机械 NAnoresonators – NEONA
  • 批准号:
    512904458
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了