Nonlinear coarse-graining of Graphene nanoresonators: realistic boundary conditions and the origin ofnonlinear damping

石墨烯纳米谐振器的非线性粗粒化:现实边界条件和非线性阻尼的起源

基本信息

项目摘要

The project will develop a highly efficient simulation platform for Graphene nanoresonators, i.e., for oscillating systems consisting of a single molecule, which is a laterally clamped membrane of one atomic layer of Graphite. For this purpose we reduce the computationally expensive atomistic Molecular dynamics models by means of the Mori-Zwanzig formalism to models with a few relevant degrees of freedom, which can be computed more efficiently. The discarded degrees of freedom act in the reduced model as fluctuations and dissipation (damping) of the oscillations. In contrast to the previous project, this project focusses especially on the challenge to represent correctly the influence of the nonlinearities and of the boundary conditions (the clamping) on the form of the fluctuating and dissipative forces acting on the relevant variables. Considering the clamping conditions explicitly implies to take the specific substrate material (Copper, Nickel, Silicon, etc.) into account, where the Graphene membrane is attached. The nonlinearities and clamping conditions are essential for the correct prediction of the resonator's quality factor, i.e., the prediction of the time before significant loss of vibrational energy. The quality factor determines the precision of the resonator to measure atomic masses, displacements, frequencies, to detect molecules, or for frequency filtering. Understanding the origins of dissipation and of its nonlinearities on an atomic scale, and the transfer of this knowledge into a reduced model will open the door to an efficient and direct atomistic design of resonance properties, for example to minimise losses, or to shift them into uncritical frequencies.
该项目将为石墨烯纳米谐振器开发一个高效的模拟平台,即由单个分子组成的振荡系统,该分子是一个石墨原子层的横向夹紧膜。为此,我们通过 Mori-Zwanzig 形式将计算成本高昂的原子分子动力学模型减少为具有一些相关自由度的模型,从而可以更有效地计算。丢弃的自由度在简化模型中充当振荡的波动和耗散(阻尼)。与之前的项目相比,该项目特别关注正确表示非线性和边界条件(夹紧)对作用于相关变量的脉动力和耗散力形式的影响的挑战。考虑夹紧条件明确意味着要考虑石墨烯膜所附着的特定基材材料(铜、镍、硅等)。非线性和钳位条件对于正确预测谐振器的品质因数(即预测振动能量显着损失之前的时间)至关重要。品质因数决定了谐振器测量原子质量、位移、频率、检测分子或频率滤波的精度。了解原子尺度上耗散及其非线性的起源,并将这些知识转移到简化模型中,将为高效、直接的共振特性原子设计打开大门,例如最大限度地减少损失,或将它们转变为非关键频率。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers.
扩散核磁共振的耗散粒子动力学需要高施密特数
  • DOI:
    10.1063/1.4953912
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Azhar;A. Greiner;J. G. Korvink;D. Kauzlarić
  • 通讯作者:
    D. Kauzlarić
Markovian dissipative coarse grained molecular dynamics for a simple 2D graphene model.
  • DOI:
    10.1063/1.4771656
  • 发表时间:
    2012-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Kauzlaric;P. Español;A. Greiner;S. Succi
  • 通讯作者:
    D. Kauzlaric;P. Español;A. Greiner;S. Succi
Markovian equations of motion for non-Markovian coarse-graining and properties for graphene blobs
非马尔可夫粗粒运动的马尔可夫方程和石墨烯斑点的性质
  • DOI:
    10.1088/1367-2630/15/12/125015
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    D. Kauzlarić;J. T. Meier;P. Español;A. Greiner;S. Succi
  • 通讯作者:
    S. Succi
SYMPLER: SYMbolic ParticLE simulatoR with grid-computing interface
SYMPLER:带有网格计算接口的 SYMbolic ParticleLE 模拟器
  • DOI:
    10.1016/j.cpc.2013.11.017
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Kauzlarić;M. Dynowski;L. Pastewka;A. Greiner;J. G. Korvink
  • 通讯作者:
    J. G. Korvink
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. David Kauzlaric其他文献

Dr. David Kauzlaric的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
  • 批准号:
    2350340
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
  • 批准号:
    2310746
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Coarse graining methods in nonequilibrium thermodynamics: Systematization and exploration using information geometry
非平衡热力学中的粗粒化方法:利用信息几何的系统化和探索
  • 批准号:
    23KJ0732
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Theory and Application of Coarse Graining
粗粒度理论与应用
  • 批准号:
    RGPIN-2021-03852
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Study of both the construction of quantum gravity via coarse-graining of gauge theory and energy on curved spacetime
研究通过粗粒度规范理论构建量子引力和弯曲时空能量
  • 批准号:
    22K03596
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rigorous coarse-graining of defects at positive temperature
正温度下缺陷的严格粗晶化
  • 批准号:
    EP/W008041/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Chaos, Randomness, Coarse-Graining: Towards a New Paradigm for Holography
混沌、随机性、粗粒度:走向全息术的新范式
  • 批准号:
    ST/W003546/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CDS&E: AI-RHEO: Learning coarse-graining of complex fluids
CDS
  • 批准号:
    2204226
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Thermodynamic inequalities under coarse-graining
粗粒度下的热力学不等式
  • 批准号:
    22K13974
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Chaos and coarse-graining in holography: towards a new paradigm for quantum gravity
全息术中的混沌和粗粒度:迈向量子引力的新范式
  • 批准号:
    EP/X030334/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了