Development of a system for the time series analysis of paleoenvironment by the embeddeing dimension method
嵌入维数法古环境时间序列分析系统的开发
基本信息
- 批准号:62840025
- 负责人:
- 金额:$ 3.71万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Developmental Scientific Research
- 财政年份:1987
- 资助国家:日本
- 起止时间:1987 至 1988
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Construction of the system for analysis. A workstation with a plenty of memory is the center of the system. A couple of personal computers are connected with it through the high-speed ethernet and used as terminals. Development of programs, input of large amounts of data, time-sharing of jobs, and graphic output are performed efficiently as well as easily. 2. Programs for analysis. The optimum time delay for embedding is estimated on the basis of autocorrelation. mutual information, and poincare section. The best time delay is selected that gives the widest scaling region. Then, we compute the point-wise dimension from randomly chosen reference points. Only good reference points are selected that give clear scaling region. Using selected reference points, correlation and information dimensions of attractor is finally obtained after averaging process. 3. Applications of the results. When the attractor dimension is obtained, local deterministic vectors are computed on a phase space with the obtained degree of freedom. local vectors are used as predictors. 4. The variation of sunspot numbers. The sunspot numbers are analysed by the above-mentioned method. We find that the variation has a low-dimensional attractor with the fractal dimension of 4.2. This implies that the dynamics generating sunspot numbers can be described by a set of deterministic equation with only 5 variables. We are trying to find if paleoclimate has a small degree of freedom. If so, then results can be used for insertion and prediction.
1. 对系统的构建进行了分析。拥有大量内存的工作站是系统的中心。两台个人电脑通过高速以太网与之连接,作为终端使用。程序的开发、大量数据的输入、作业的分时分配和图形输出都可以高效而轻松地完成。2. 用于分析的程序。在自相关的基础上估计了最优的嵌入时延。互信息,和庞加莱节。选择给出最宽缩放区域的最佳延时。然后,我们从随机选择的参考点计算逐点维数。只有选择好的参考点,给出明确的缩放区域。选取参考点,经过平均处理,最终得到吸引子的相关维数和信息维数。3. 结果的应用。当获得吸引子维数后,在获得自由度的相空间上计算局部确定性向量。局部向量被用作预测因子。4. 太阳黑子数的变化。用上述方法对太阳黑子数进行了分析。我们发现变异具有低维吸引子,分形维数为4.2。这意味着产生太阳黑子数的动力学可以用一组只有5个变量的确定性方程来描述。我们试图发现古气候是否有一定程度的自由。如果是这样,那么结果可以用于插入和预测。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Nomura and K.Ito: Earth and Planetary Science Letters.
M.Nomura 和 K.Ito:地球与行星科学快报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Nomura: "The fractal demension of the sunspots attractor" Earth and Planetary Science Letters.
M. Nomura:“太阳黑子吸引子的分形维数”《地球与行星科学快报》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Nomura;K.Ito: Earth and Planetary Sclence Letters.
M.Nomura;K.Ito:地球和行星科学快报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ITO Keisuke其他文献
ITO Keisuke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ITO Keisuke', 18)}}的其他基金
Crystal structure of glucansucrase from the dental caries pathogen, Streptococcus mutans
龋齿病原体变形链球菌葡聚糖蔗糖酶的晶体结构
- 批准号:
23780139 - 财政年份:2011
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Rhythms and Rhythmic Structures of the Earth
地球的节律和节律结构
- 批准号:
02302031 - 财政年份:1990
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
A Study of the Chemical Evolution by the Molecular-beam Epitaxy Method
分子束外延法研究化学演化
- 批准号:
59400010 - 财政年份:1984
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for General Scientific Research (A)
相似海外基金
Evaluation for the Emotion of Dental Patients Using Emotion Fractal-dimension Analysis Method
情绪分维分析法对牙科患者情绪的评价
- 批准号:
19K10322 - 财政年份:2019
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of diversity-robust acoustic feature signatures for environmental sounds based on multi-scale fractal dimension and establishment of its applied methods
基于多尺度分形维数的环境声音多样性鲁棒声学特征特征的开发及其应用方法的建立
- 批准号:
18K11378 - 财政年份:2018
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Impact of PET Image Reconstruction Algorithm on Fractal Dimension
PET图像重建算法对分形维数的影响
- 批准号:
17K09066 - 财政年份:2017
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The number of solutions and the length and the fractal dimension of oscillatory solutions of two point boundary problems
两点边界问题的解数及振荡解的长度和分形维数
- 批准号:
26400182 - 财政年份:2014
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fractal dimension of propagating flame during an accidental gas explosion
意外瓦斯爆炸过程中传播火焰的分形维数
- 批准号:
24310118 - 财政年份:2012
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Cluster algorithm Monte Carlo study of the XY-model on Menger Sponge with fractal dimension D = log(20)/log(3)
分形维数 D = log(20)/log(3) 的门格尔海绵 XY 模型的聚类算法蒙特卡罗研究
- 批准号:
411001-2011 - 财政年份:2011
- 资助金额:
$ 3.71万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
The number of nonoscillatory solutions and the length and the fractal dimension for two-point boundary value problems
两点边值问题的非振荡解的数量以及长度和分形维数
- 批准号:
23740113 - 财政年份:2011
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Travel behavior analysis using the fractal dimension of states as indices expressing the influence on one worker from other personnel
使用状态的分形维数作为表达其他人员对一名工人的影响的指标的出行行为分析
- 批准号:
22560530 - 财政年份:2010
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FRACTAL DIMENSION IN HUMAN CEREBELLUM MEASURED BY MRI
通过 MRI 测量人类小脑的分形维数
- 批准号:
8171135 - 财政年份:2010
- 资助金额:
$ 3.71万 - 项目类别:
FRACTAL DIMENSION IN HUMAN CEREBELLUM MEASURED BY MRI
通过 MRI 测量人类小脑的分形维数
- 批准号:
7955757 - 财政年份:2009
- 资助金额:
$ 3.71万 - 项目类别: