Alloying- and microstructure-based fatigue life characterisation and prediction of vacuum brazed AISI 304L/NiFeCrSiB joints in corrosive environments
腐蚀环境中真空钎焊 AISI 304L/NiFeCrSiB 接头基于合金和微观结构的疲劳寿命表征和预测
基本信息
- 批准号:408904168
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The characterisation of the fatigue life of brazed joints under superimposed corrosive loads is of major importance for many industrial applications, such as turbine components or exhaust gas recirculation coolers, and will help to improve the reliable and economical operation of these. Therefore, the knowledge of alloy-process-structure-property relationships for different corrosive environments in terms of chemical composition and temperature is of great interest. Thus, the project aims to generate an extensive characterisation of the alloying-dependent corrosion fatigue mechanisms of nickel-based brazed joints. An artificial neuronal network modelling approach for brazed joints will be applied and trained with destructive testing results, microstructure investigations, and non-destructive measurements to enable lifetime predictions considering the complex superimposition of environmental influencing parameters. This approach will further be used to calculate optimized alloying compositions of the filler metals regarding the iron and molybdenum content. Based on this calculated modifications, optimised specimens will be produced and tested iteratively for further characterisation. Thus, it will be evaluated whether an improvement of corrosion fatigue properties through a well-adjusted molybdenum content can be reached. Further, an understanding of the influence of iron in nickel-based alloys will be gained. Since microstructure analysis is the key element for an understanding of corrosion fatigue properties, the influence of both elements on the formation of brittle phases will be determined by EDX and EBSD scans. In addition, the effect of alloying elements on residual stresses will be investigated at high resolution. This allows the analysis of different brazed zones regarding correlations to crack initiation and propagation in relation of fatigue properties. Eddy current and DC potential drop measurements will be applied additionally to allow non-destructive conclusions about brazing defects and a general statement about the joint quality. The combination, adaption and further development of these selected analysis and testing methods aims to enable a detailed understanding of alloy-process-structure-property relationships for brazed joints even beyond the corrosion fatigue behaviour, and new approaches for brazing shall be transferable to other alloy systems and application conditions.
研究焊接接头在叠加腐蚀载荷作用下的疲劳寿命,对于汽轮机部件或废气再循环冷却器等工业应用具有重要意义,并有助于提高这些部件的可靠性和经济性。因此,从化学成分和温度的角度了解不同腐蚀环境下的合金-工艺-组织-性能关系是非常有意义的。因此,该项目旨在对镍基钎焊接头的合金相关腐蚀疲劳机制进行广泛的表征。将应用人工神经网络焊接接头建模方法,并结合破坏性测试结果、微观结构研究和无损测量进行培训,以实现考虑环境影响参数复杂叠加的寿命预测。该方法将进一步用于计算有关铁和钼含量的填充金属的最佳合金化成分。在此计算修改的基础上,将产生优化的样品,并反复测试以进行进一步的表征。因此,将评估是否可以通过良好调整钼含量来改善腐蚀疲劳性能。此外,还将了解铁在镍基合金中的影响。由于显微组织分析是了解腐蚀疲劳性能的关键因素,因此这两种元素对脆性相形成的影响将通过EDX和EBSD扫描来确定。此外,还将在高分辨率下研究合金元素对残余应力的影响。这使得能够分析不同的钎焊区与疲劳性能相关的裂纹萌生和扩展的相关性。此外,还将应用涡流和直流电位降测量,以非破坏性地得出有关铜焊缺陷的结论和关于接头质量的一般声明。这些选定的分析和测试方法的结合、适应和进一步发展旨在使人们能够详细了解钎焊接头的合金-工艺-组织-性能关系,甚至超越腐蚀疲劳行为,新的铜焊方法应适用于其他合金系统和应用条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Frank Walther其他文献
Professor Dr.-Ing. Frank Walther的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Frank Walther', 18)}}的其他基金
Mechanism-oriented characterization of the microstructural and load direction-dependent cyclic creep (ratcheting) behavior of the magnesium alloy WE43
镁合金 WE43 微观结构和载荷方向相关循环蠕变(棘轮)行为的机制导向表征
- 批准号:
317233119 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Microstructure- and mechanism-correlated characterization of the corrosion fatigue behavior of the creep-resistant magnesium alloys DieMag422 and AE42
抗蠕变镁合金 DieMag422 和 AE42 腐蚀疲劳行为的微观结构和机理相关表征
- 批准号:
258700985 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Microstructure-based understanding of the test frequency influence on the corrosion fatigue behaviour of austenite AISI 304L joints brazed with nickel based filler metal
基于微观结构的理解测试频率对镍基填充金属钎焊的奥氏体 AISI 304L 接头腐蚀疲劳行为的影响
- 批准号:
264915567 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Mechanism-based characterization of the fatigue and corrosion fatigue properties of addtively manufactured TPMS lattice structures under physiological conditions
基于机理的生理条件下额外制造的 TPMS 晶格结构的疲劳和腐蚀疲劳特性表征
- 批准号:
495860364 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Mechanism-based development and validation of a structural health monitoring for climate adaptive architectural Cottonid elements
基于机制的气候适应性建筑 Cottonid 元件结构健康监测的开发和验证
- 批准号:
325009350 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Greybox model-based prediction of wear evolution of coated tools through experimental and model-driven identification of relevant loads
通过实验和模型驱动的相关载荷识别,基于灰盒模型预测涂层刀具的磨损演变
- 批准号:
521377466 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
基于甲状旁腺素重塑腱骨止点微结构及促软骨和抑瘢痕的机制研究
- 批准号:82372132
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
结合软印刷技术的复合材料新型层间结构架构
- 批准号:51103142
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
新型微针气体探测器LM(Leak Microstructure)的研究
- 批准号:10775151
- 批准年份:2007
- 资助金额:38.0 万元
- 项目类别:面上项目
微结构设计的基础理论及关键技术研究
- 批准号:50175017
- 批准年份:2001
- 资助金额:19.0 万元
- 项目类别:面上项目
相似海外基金
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
- 批准号:
10645844 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of high-performance SmFe12-based sintered magnets using a unique combinatorial approach
使用独特的组合方法开发高性能 SmFe12 基烧结磁体
- 批准号:
23H01674 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Manufacturing of Distillation Membranes with Controlled Microstructure Based on Atomistic and Continuum Theories
基于原子和连续理论的可控微结构蒸馏膜的制造
- 批准号:
2312304 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: How Does the Heart Contract? A Microstructure-Based Approach to Understand Cardiac Function and Dysfunction
职业:心脏如何收缩?
- 批准号:
2237391 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Preterm birth and white matter microstructure in early childhood
早产与幼儿期脑白质微观结构
- 批准号:
486301 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship Programs
Microstructure-based modelling of spot weld failure in third generation advanced high strength steels
第三代先进高强度钢点焊失效的基于微观结构的建模
- 批准号:
549807-2019 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Development of new microstructure control method based on visualization of plastic deformation under non-uniform temperature strain rate fields
基于非均匀温度应变率场下塑性变形可视化的新型微观结构控制方法的开发
- 批准号:
20KK0321 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Experimental and simulational demonstration of the optimal print path for 3D printed CFRP based on the microstructure
基于微观结构的3D打印CFRP最佳打印路径的实验和模拟演示
- 批准号:
22K20415 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
CAREER: Understanding Microstructure Evolution and Mechanical Properties of High-rate Additively Deposited Nickel-based Superalloy to Enable Future Clean-energy Manufacturing
职业:了解高速增材沉积镍基高温合金的微观结构演变和机械性能,以实现未来的清洁能源制造
- 批准号:
2143926 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Atomistic understanding of microstructure formation based on metadynamics
基于元动力学的微观结构形成的原子理解
- 批准号:
22H01754 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)