CAREER: Understanding Microstructure Evolution and Mechanical Properties of High-rate Additively Deposited Nickel-based Superalloy to Enable Future Clean-energy Manufacturing

职业:了解高速增材沉积镍基高温合金的微观结构演变和机械性能,以实现未来的清洁能源制造

基本信息

  • 批准号:
    2143926
  • 负责人:
  • 金额:
    $ 64.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

Future clean power generation technologies will require advanced manufacturing processes to produce high-performance components locally and swiftly as well as by a diverse and effective workforce of both engineers and technicians. Additive manufacturing based on automated metal arc welding is capable of large-scale and high-rate depositions and has the potential to provide flexibility and accelerated production needed to support the energy infrastructure. However, the lack of a comprehensive understanding of how processing conditions affect the material's microstructures and the high-temperature mechanical properties and if post-processing is needed, hinders the adoption of such arc-welding based additive manufacturing in the industry. This Faculty Early Career Development (CAREER) award supports an integrated experimental and modeling approach to develop a mechanistic link between processing conditions, during additive manufacturing and required post-processing, and crucial microstructural features that dictate high-temperature creep and fatigue performance relevant to power generation operations. The project will also involve a minority-serving 2-year welding technology program and develop a module that teaches welding apprentices with various forms of automation, plus a joint capstone project with engineering students from the Colorado School of Mines, which provides a unique opportunity of team working with mutual appreciation of complementary skills and expertise. The automation module will then be shared with other paired 2-year and 4-year educational institutes around the country to develop a cohesive workforce for additive manufacturing. This educational endeavor will contribute to a more diverse, agile, and effective workforce, thus promoting the energy security and Nation’s prosperity.The overall research objective is to address the challenging knowledge gaps, in both process and materials engineering, needed to realize emerging clean power generation technologies. To overcome the complexity, the project team will develop a quantitative and mechanistic understanding of the processing, microstructures, and high temperature property relationships in wire arc additive manufacturing of a nickel-based superalloy, i.e., Haynes 282. Experimental methods including fabrications, in-situ thermal imaging, hot isostatic pressing, material characterizations and various mechanical testing will be combined with analytical and computational models to fundamentally investigate: (1) influence of deposition conditions to as-build microstructures and morphology, (2) potential of hot isostatic pressing to simultaneously reduce defects while controlling the grain size and morphology, and (3) effects of microstructure characteristics (controlled by deposition and hot isostatic pressing) on high-temperature tensile, fatigue, and creep performance between 800 and 900 Celsius, targeting demanding severe power plant environments. The successful completion of this project will substantially advance the science of metal additive manufacturing for extreme service conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来的清洁发电技术将需要先进的制造工艺,以便在当地快速生产高性能部件,并由多样化和有效的工程师和技术人员组成。基于自动金属弧焊的增材制造能够进行大规模和高速率沉积,并有可能提供支持能源基础设施所需的灵活性和加速生产。然而,缺乏对加工条件如何影响材料的微观结构和高温机械性能以及是否需要后处理的全面了解,阻碍了这种基于弧焊的增材制造在工业中的采用。该学院早期职业发展(CAREER)奖支持综合实验和建模方法,以开发增材制造和所需后处理过程中的加工条件之间的机械联系,以及决定与发电操作相关的高温蠕变和疲劳性能的关键微观结构特征。该项目还将涉及一个为少数民族服务的为期2年的焊接技术计划,并开发一个模块,教授焊接学徒各种形式的自动化,加上一个与科罗拉多矿业学院工程专业学生的联合顶点项目,该项目提供了一个独特的团队合作机会,相互欣赏互补的技能和专业知识。然后,自动化模块将与全国其他配对的2年制和4年制教育机构共享,以培养一支有凝聚力的增材制造员工队伍。这一教育奋进将有助于更多样化,灵活,有效的劳动力,从而促进能源安全和国家的繁荣。总体研究目标是解决具有挑战性的知识差距,在过程和材料工程,需要实现新兴的清洁发电技术。为了克服复杂性,项目团队将对镍基高温合金的电弧增材制造中的加工、微观结构和高温性能关系进行定量和机械理解,即,282. big game实验方法,包括制造,原位热成像,热等静压,材料表征和各种机械测试将与分析和计算模型相结合,从根本上研究:(1)沉积条件对构建态微观结构和形态的影响,(2)热等静压在控制晶粒尺寸和形态的同时减少缺陷的潜力,以及(3)微观结构特征(由沉积和热等静压控制)对800和900摄氏度之间的高温拉伸、疲劳和蠕变性能的影响,目标是苛刻的发电厂环境。该项目的成功完成将极大地推动极端使用条件下的金属增材制造科学。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonah Klemm-Toole其他文献

Rationalizing Different Microstructures and Yield Strengths of Cross-Platform Laser Powder Bed Fusion 316L
Creep performance of a standard and modified version of laser powder bed fusion-processed Haynes 230
  • DOI:
    10.1016/j.msea.2024.147620
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel McConville;Ben Rafferty;Kevin Eckes;Jeremy Iten;Amy Clarke;Jonah Klemm-Toole
  • 通讯作者:
    Jonah Klemm-Toole
Microstructure and Mechanical Property Stability of Wire Arc Directed Energy Deposition Austenitic Stainless Steels During Thermal Aging at 650°C
  • DOI:
    10.1007/s11837-023-06120-x
  • 发表时间:
    2023-10-03
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Juan Gonzalez;Stephen Tate;Jonah Klemm-Toole
  • 通讯作者:
    Jonah Klemm-Toole
Microstructure and Creep Performance of Direct Single-Step Aged Gas Metal Arc Directed Energy Deposition Processed Haynes 282
Solidification behavior and texture of 316L austenitic stainless steel by laser wire directed energy deposition
激光熔丝定向能量沉积 316L 奥氏体不锈钢的凝固行为和织构
  • DOI:
    10.1016/j.matchar.2024.113916
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Olivia DeNonno;Alec Saville;Jake Benzing;Jonah Klemm-Toole;Zhenzhen Yu
  • 通讯作者:
    Zhenzhen Yu

Jonah Klemm-Toole的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Understanding Microstructure Evolution and Deformation Mechanism of Strong yet Ductile Nanolamellar High-Entropy Alloys Produced by Additive Manufacturing
职业:了解增材制造生产的强韧纳米层状高熵合金的微观结构演变和变形机制
  • 批准号:
    2238204
  • 财政年份:
    2023
  • 资助金额:
    $ 64.13万
  • 项目类别:
    Continuing Grant
RII Track-4: NSF: Understanding Microstructure Evolution in Stimuli-Responsive Yield-Stress Fluid-Assisted 3D Printing: Linking Microstructures to Macroscale Rheological Properties
RII Track-4:NSF:了解刺激响应屈服应力流体辅助 3D 打印中的微观结构演化:将微观结构与宏观流变特性联系起来
  • 批准号:
    2229004
  • 财政年份:
    2023
  • 资助金额:
    $ 64.13万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Role of Spin-Dynamics in the Formation of Magnetic Microstructure
职业:了解自旋动力学在磁性微结构形成中的作用
  • 批准号:
    2143610
  • 财政年份:
    2022
  • 资助金额:
    $ 64.13万
  • 项目类别:
    Continuing Grant
Understanding Microstructure Evolution and Control During Hot Deformation: Application to Solid State Joining of High Strength Alloys
了解热变形过程中的微观结构演变和控制:在高强度合金固态连接中的应用
  • 批准号:
    RGPIN-2018-03889
  • 财政年份:
    2022
  • 资助金额:
    $ 64.13万
  • 项目类别:
    Discovery Grants Program - Individual
Atomistic understanding of microstructure formation based on metadynamics
基于元动力学的微观结构形成的原子理解
  • 批准号:
    22H01754
  • 财政年份:
    2022
  • 资助金额:
    $ 64.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
  • 批准号:
    RGPIN-2020-06109
  • 财政年份:
    2022
  • 资助金额:
    $ 64.13万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding of microstructure and shape memory characteristics of SLM Ti-Nb alloys
了解SLM Ti-Nb合金的微观结构和形状记忆特性
  • 批准号:
    21K03814
  • 财政年份:
    2021
  • 资助金额:
    $ 64.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding Microstructure Evolution and Control During Hot Deformation: Application to Solid State Joining of High Strength Alloys
了解热变形过程中的微观结构演变和控制:在高强度合金固态连接中的应用
  • 批准号:
    RGPIN-2018-03889
  • 财政年份:
    2021
  • 资助金额:
    $ 64.13万
  • 项目类别:
    Discovery Grants Program - Individual
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
  • 批准号:
    RGPIN-2020-06109
  • 财政年份:
    2021
  • 资助金额:
    $ 64.13万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Understanding the Combined Effect of Microstructure and Topology on the Mechanical Behavior of Additively Manufactured Lattice Structures
职业:了解微观结构和拓扑对增材制造晶格结构机械行为的综合影响
  • 批准号:
    2223314
  • 财政年份:
    2021
  • 资助金额:
    $ 64.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了