Optomechanical limits of tubular optofluidics
管状光流控的光机械限制
基本信息
- 批准号:411766042
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of the current project is to research the optical performance limits of all-liquid optofluidic imaging systems. The primary optical performance considerations are aberration control and actuation speed. At the conclusion of the project, we intend to demonstrate aberration-corrected fluidic imaging systems which can be actuated at speeds which make them competitive with classical, bulk opto-mechanical components.The tubular optofluidic technology is based on controlled manipulation of numerous liquids, with precisely defined refractive indices, densities and immiscibility, packaged in a completely fluid-filled cylindrical tube. Actuation of the phase fronts (menisci) is through electrowetting, controlled by applied voltages on a structured foil on the inside surface of the tube.Key to enhanced aberration control and a more precise manipulation of the liquid phase fronts for high-spatial-frequency wavefront modulation is realization of a high electrode density inside this fluidic tube. Detailed analysis of the hydrostatics of the system will be undertaken, as will a detailed design of the liquid/liquid and liquid/surface interfaces. Through realization of 64 azimuthally-distributed electrodes, the limits to high-spatial-frequency definition of the phase fronts will be determined.In addition, high-speed actuation of fluidic imaging and scanning systems will require new and novel liquid and dielectric interface materials, to optimize voltage and electric field distributions and reduce actuation time constants. Through hydrostatic and hydrodynamic analysis of the all-liquid imaging systems, it is expected that actuation speeds suitable for a wide variety of applications will result.As demonstrators for high-performance all-liquid imaging and scanning systems, a tunable anamorphic imager; a 360-degree optical scanner with no mechanically-moving parts; and an aberration-corrected tunable lens system will be realized.We expect that these results will make sufficient scientific and technological impact so that optofluidic components and systems will become significantly closer to usability in real-world applications.
本项目的目标是研究全液体光流成像系统的光学性能极限。光学性能的主要考虑因素是像差控制和驱动速度。在项目结束时,我们打算展示像差校正的流体成像系统,它的驱动速度使其与经典的大块光学机械组件竞争。管状光学流体技术基于对大量液体的受控操纵,具有精确定义的折射率、密度和不混相性,包装在完全充满流体的圆柱管中。通过在管子内表面的结构箔上施加电压来控制对相前沿(半月板)的激励,增强像差控制和更精确地操纵用于高空间频率波前调制的液相前沿的关键是在该流控管内实现高电极密度。将对该系统的流体静力学进行详细分析,并对液体/液体和液体/表面界面进行详细设计。通过实现电极的方位向分布,将确定相前沿的高空间频率清晰度的极限。此外,流体成像和扫描系统的高速激励将需要新型的液体和介质界面材料,以优化电压和电场分布,降低激励时间常数。通过对全液体成像系统的流体静力学和流体动力学分析,预计将产生适合于各种应用的驱动速度。作为高性能全液体成像和扫描系统的演示,将实现可调谐变形成像器;没有机械运动部件的360度光学扫描器;以及校正像差的可调透镜系统。我们预计这些结果将产生足够的科学和技术影响,使光流控部件和系统变得更加接近实际应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Hans Zappe其他文献
Professor Dr. Hans Zappe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Hans Zappe', 18)}}的其他基金
Muscle-MEMS - Microsystems engineering for fabrication of liquid crystal elastomers
Muscle-MEMS - 用于制造液晶弹性体的微系统工程
- 批准号:
316245751 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Administrative Koordination des SPP 1337 Aktive Mikrooptik
SPP 1337 主动微光学的行政协调
- 批准号:
85419514 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Priority Programmes
Polymer-basierte photonische Kristalle mit durchstimmbarer Bandlücke
带隙可调的聚合物基光子晶体
- 批准号:
50294967 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
- 批准号:
2340481 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
- 批准号:
DE240100664 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
- 批准号:
EP/Z000394/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




