Joint Iterative Reconstruction and Motion Compensation for Optical Coherence Tomography Angiography
光学相干断层扫描血管造影的联合迭代重建和运动补偿
基本信息
- 批准号:414781207
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While OCTA imaging has shown great promise for improving patient care in ophthalmology, its full potential has been limited. There is an urgent need for robust and accurate motion detection and correction and improved OCTA processing algorithms that will decrease noise levels and improve image quality and resolution. Furthermore, there is only few open-source software that enables researchers from around the world to produce high quality images. In order to address these needs, the project will pursue the following objectives:A) Improved motion compensation including the use of the OCTA signal for improved data consistency, more accurate motion models that allow affine motions such as rotation and scaling, and integration of surrogate signals stemming from camera-based eye-tracking or navigator-based motion estimation approaches yielding a full 3-D correction for all acquired A-scan data.B) Physically correct OCTA signal extraction that employs compressive sensing-based regularization approaches in the OCTA signal extraction and integrates the full 3-D motion model from Objective A including the interpolation process in combination with correct physical noise models.C) Precision Learning Reconstruction that augments the physically correct model from Objective B with additional deep learning techniques to learn data-optimal sparse domains and optimal navigator patterns for motion signal extraction.All software created in this project will be published as open source software.
虽然OCTA成像在改善眼科患者护理方面显示出巨大的前景,但其全部潜力仍然有限。迫切需要健壮和准确的运动检测和校正以及改进的OCTA处理算法,以降低噪声水平并提高图像质量和分辨率。此外,能够让世界各地的研究人员制作高质量图像的开源软件寥寥无几。为了满足这些需要,该项目将追求以下目标:a)改进运动补偿,包括使用OCTA信号以提高数据一致性,建立更精确的运动模型,允许旋转和缩放等仿射运动,B)物理校正OCTA信号提取,在OCTA信号提取中使用基于压缩感知的正则化方法,并集成来自目标A的完整三维运动模型,包括内插过程和正确的物理噪声模型。C)精确学习重建,使用附加的深度学习技术来增强来自目标B的物理校正模型,以学习数据-最优稀疏域和最优导航模式用于信号提取。本项目中创建的所有软件将作为开源软件发布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Andreas Maier其他文献
Professor Dr.-Ing. Andreas Maier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Andreas Maier', 18)}}的其他基金
Improved characterization of failure behaviours of sheet metals based on pattern recognition methods
基于模式识别方法改进金属板材失效行为表征
- 批准号:
325262702 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Consistency Conditions for Artifact Reduction in Cone-beam CT
锥束CT伪影减少的一致性条件
- 批准号:
273134754 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Temporally resolved 3-D retinal blood flow quantification using advanced motion correction and signal reconstruction in optical coherence tomography angiography
在光学相干断层扫描血管造影中使用先进的运动校正和信号重建进行时间分辨 3D 视网膜血流定量
- 批准号:
508075009 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CIF: Small: Efficient Model-Based Iterative Reconstruction For High Resolution CT
CIF:小型:基于模型的高效迭代重建高分辨率 CT
- 批准号:
2210866 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Development of low-dose dynamic myocardial CT perfusion protocol using iterative reconstruction
使用迭代重建开发低剂量动态心肌 CT 灌注方案
- 批准号:
21K15767 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Hybrid method for iterative CT reconstruction and deep learning
迭代 CT 重建和深度学习的混合方法
- 批准号:
19K08093 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantitative T2* Relaxation and Field Inhomogeneity Mapping Using Multi-Echo Radial FLASH Magnetic Resonance Imaging and Model-based Iterative Reconstruction
使用多回波径向闪光磁共振成像和基于模型的迭代重建进行定量 T2* 弛豫和场不均匀性映射
- 批准号:
427934942 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Optimizing Weights in Iterative Image Reconstruction Algorithms Applied to Optical Computed Tomography Imaging
优化应用于光学计算机断层扫描成像的迭代图像重建算法中的权重
- 批准号:
542768-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
An iterative reconstruction algorithm for use in radar-based microwave imaging for breast cancer detection
用于乳腺癌检测的基于雷达的微波成像的迭代重建算法
- 批准号:
528851-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Micro tomographic iterative reconstruction for materials characterization and inspection
用于材料表征和检查的显微断层扫描迭代重建
- 批准号:
523112-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Advanced iterative image reconstruction for digital breast tomosynthesis - Resubmission 01
用于数字乳腺断层合成的高级迭代图像重建 - 重新提交 01
- 批准号:
9978584 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Advanced iterative image reconstruction for digital breast tomosynthesis - Resubmission 01
用于数字乳腺断层合成的高级迭代图像重建 - 重新提交 01
- 批准号:
10224861 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Optimization of Clinical X-ray Computed Tomography Scanning Parameters for Iterative Reconstruction
迭代重建临床 X 射线计算机断层扫描参数的优化
- 批准号:
17K16455 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)