Advanced iterative image reconstruction for digital breast tomosynthesis - Resubmission 01
用于数字乳腺断层合成的高级迭代图像重建 - 重新提交 01
基本信息
- 批准号:9978584
- 负责人:
- 金额:$ 52.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-14 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAlgorithmic SoftwareAlgorithmsBackBreastBreast Cancer DetectionBreast MicrocalcificationCallbackClassificationClinicClinicalComplexComputer softwareDataDatabasesDetectionDevelopmentDevicesDigital Breast TomosynthesisDimensionsEnsureFiberImageIndustrializationIndustryIndustry CollaborationInvestigationLesionLiteratureMalignant NeoplasmsMammographic screeningManualsMethodologyModalityPatientsPerformancePlayResearchResearch PersonnelResolutionRoleScanningScreening for cancerSignal TransductionSkinSpiculateSystemTechniquesTextureThickTimeTissuesTranslatingTranslationsVendorVisualWorkX-Ray Computed TomographyX-Ray Tomographybasebreast imagingcalcificationcase-by-case basisclinical applicationclinical practicecontrast imagingdensitydesigndigitalimage reconstructionimaging propertiesimaging scientistimprovedinnovationmalignant breast neoplasmnovelprototypepublic health relevanceradiologistscreeningsimulationsuccesstomographytumor
项目摘要
Project Description
Digital breast tomosynthsis (DBT) has been growing rapidly in its application to mammographic cancer
screening. While evidence exists suggesting that iterative image reconstruction (IIR) algorithms may improve
DBT image quality in terms of visualizing tumor spiculations and microcalcifications in the breast without any
adjustment to the DBT hardware, there remains a large gap between development of advanced IIR and its
translation to the clinic. This project, building upon our previous success on IIR development for DBT, focuses
on filling in this gap through development and integration of novel IIR algorithms into DBT systems with the
parameter selection in an automated fashion, thus realizing the potential of IIR for improving DBT-image
quality. The project has available a database of hundreds of normal/abnormal DBT cases with clinical DBT
systems, and the assistance of our in-house imaging physicists and radiologists. The specific aims of the
research are: 1: Investigate novel advanced IIR algorithms; 2A: Design image quality metrics specific to DBT
volume characterization; 2B: Determine of IIR algorithms parameters from simulation-based IQ metrics; 3:
Quantitatively evaluate the performance of automated advanced IIR on DBT imaging. The benefit of the
resulting automated IIR algorithms from Aims 1-2 will be evaluated quantitatively in Aim 3 by expert observers
against the clinical processing with respect to imaging tasks relevant for DBT. The proposed project has high
clinical and technical significance, because the use of DBT for mammography screening is becoming the
standard in the US and because the research proposed enables the translation of advanced IIR to impact DBT
clinic applications. We will directly develop the automated IIR algorithms on the industrial leading scanner, the
Hologic Selenia Dimensions, employed in our clinic, and thus improvements gained in this project may have an
immediate impact for mammographic screening in terms of increasing sensitivity and reducing call-back rates.
The team assembled for this project includes leading imaging scientists, physicists, and breast-imaging
radiologists, along with industrial consultants.
项目描述
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIAOCHUAN PAN其他文献
XIAOCHUAN PAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIAOCHUAN PAN', 18)}}的其他基金
Algorithm-Enabled Auto-Calibrating Quantitative Dual-Energy CT
支持算法的自动校准定量双能 CT
- 批准号:
10448987 - 财政年份:2022
- 资助金额:
$ 52.85万 - 项目类别:
Advanced iterative image reconstruction for digital breast tomosynthesis - Resubmission 01
用于数字乳腺断层合成的高级迭代图像重建 - 重新提交 01
- 批准号:
10224861 - 财政年份:2018
- 资助金额:
$ 52.85万 - 项目类别:
36th Annual International Conference of the IEEE Engineering in Medicine and Biol
第 36 届 IEEE 医学和生物工程国际年会
- 批准号:
8720474 - 财政年份:2014
- 资助金额:
$ 52.85万 - 项目类别:
Digital Specimen Tomosynthesis for Volumetric Imaging of Lumpectomy Specimens
用于肿瘤切除标本体积成像的数字标本断层合成
- 批准号:
9085109 - 财政年份:2014
- 资助金额:
$ 52.85万 - 项目类别:
Digital Specimen Tomosynthesis for Volumetric Imaging of Lumpectomy Specimens
用于肿瘤切除标本体积成像的数字标本断层合成
- 批准号:
8766676 - 财政年份:2014
- 资助金额:
$ 52.85万 - 项目类别:
Development of Advanced C-arm Cone-Beam CT for the Treatment of Liver Cancer
先进C型臂锥束CT治疗肝癌的开发
- 批准号:
9305887 - 财政年份:2014
- 资助金额:
$ 52.85万 - 项目类别:
Development of Advanced C-arm Cone-Beam CT for the Treatment of Liver Cancer
先进C型臂锥束CT治疗肝癌的开发
- 批准号:
8616609 - 财政年份:2014
- 资助金额:
$ 52.85万 - 项目类别:
International Symposium on Biomedical Imaging: from Nano to Macro 2011 (ISBI2011)
生物医学成像国际研讨会:从纳米到宏观2011 (ISBI2011)
- 批准号:
8133639 - 财政年份:2011
- 资助金额:
$ 52.85万 - 项目类别:
31st Annual International Conference of IEEE Engineeering in Medicine and Biology
第 31 届 IEEE 医学和生物学工程国际会议
- 批准号:
7744371 - 财政年份:2009
- 资助金额:
$ 52.85万 - 项目类别:
Optimized Cone-Beam CT for Image-Guided Radiation Therapy
用于图像引导放射治疗的优化锥束 CT
- 批准号:
8078958 - 财政年份:2007
- 资助金额:
$ 52.85万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 52.85万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 52.85万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 52.85万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 52.85万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 52.85万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 52.85万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 52.85万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 52.85万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 52.85万 - 项目类别:














{{item.name}}会员




