Control of the cyanobacterial day-night metabolism by a biological clock system

生物钟系统控制蓝藻昼夜代谢

基本信息

项目摘要

In natural environments, cyanobacteria are subjected to changing and often unpredictable environmental conditions. Some of the changes are, however, predictable, such as the day-night switch. For photosynthetic organisms, growth in such a light-dark cycle requires a complete reversal of their metabolism. Photosynthesis and CO2 fixation is performed during the day because these processes are light-dependent. At night, the glycogen reserves that were synthesized during the light period are degraded and the cells therefore transition from a photoautotrophic to a heterotrophic metabolism. Cyanobacteria are able to predict the daily changes in light availability using a biological clock which shares no homology to known clock systems from eukaryotic organisms. In our previous studies we revealed that homologs of the known bacterial-type clock proteins are important for the growth of the model cyanobacterium Synechocystis sp. PCC 6803 in light-dark cycles. Our studies of the effects of clock mutations on central metabolism in the light and the dark strongly contributed to the aim of the research unit “The Autotrophy Heterotrophy Switch in Cyanobacteria: Coherent decision-making on multiple regulatory layers” (abbreviated “SCyCode”). In close cooperation with SCyCode experts in metabolic and proteomic analyses, we revealed especially strong changes in the dark metabolism of Synechocystis sp. PCC 6803 clock mutants. Most importantly, a defective clock system in this organism led to a failure to switch off the activity of the carbon fixing enzyme RubisCO in the dark and a deficiency in the accumulation of the storage compound polyhydroxybutyrate, a biopolymer of biotechnological potential. Further, we studied an alternative clock system which we found to be relevant for heterotrophic growth. During the second funding period, we will focus on a mechanistic understanding of the role of the different clock proteins in the switch between autotrophy and heterotrophy in day-night cycles. The experiments which we have designed in cooperation with SCyCode members should identify the direct targets of the different clock systems, explain how Synechocystis clock proteins contribute to the regulation of carbon fixation and how clock-dependent protein phosphorylation and gene expression changes allow a balanced cyanobacterial metabolism in a day-night rhythm. These insights might be of crucial importance for potential biotechnological applications for sustainable exploitation of phototrophic microorganisms.
在自然环境中,蓝藻受到不断变化的,往往是不可预测的环境条件。然而,有些变化是可以预测的,例如昼夜切换。对于光合生物来说,在这样的光暗循环中生长需要完全逆转它们的新陈代谢。光合作用和CO2固定在白天进行,因为这些过程依赖于光。在夜间,在光照期间合成的糖原储备被降解,因此细胞从光合自养代谢转变为异养代谢。蓝细菌能够使用生物钟来预测光可用性的每日变化,该生物钟与真核生物的已知时钟系统没有同源性。在我们以前的研究中,我们发现,已知的细菌型时钟蛋白的同源物是重要的生长模式蓝藻集胞藻属PCC 6803在光暗循环。我们对时钟突变在光照和黑暗中对中央代谢的影响的研究,为研究单位“蓝藻中的自养异养开关:多个监管层的一致决策”(简称“SCyCode”)的目标做出了巨大贡献。 通过与SCyCode专家在代谢和蛋白质组学分析方面的密切合作,我们发现集胞藻PCC 6803时钟突变体的暗代谢发生了特别强烈的变化。最重要的是,这种生物体中有缺陷的时钟系统导致在黑暗中无法关闭碳固定酶RubisCO的活性,并且缺乏储存化合物聚羟基丁酸酯(一种具有生物技术潜力的生物聚合物)的积累。此外,我们研究了一个替代的时钟系统,我们发现是相关的异养生长。 在第二个资助期内,我们将专注于对不同时钟蛋白在昼夜周期中自养和异养之间切换的作用的机械理解。我们与SCyCode成员合作设计的实验应该确定不同时钟系统的直接目标,解释集胞藻时钟蛋白如何有助于碳固定的调节,以及时钟依赖的蛋白磷酸化和基因表达变化如何允许昼夜节律平衡的蓝藻代谢。这些见解可能是至关重要的潜在的生物技术应用可持续利用的光养微生物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Annegret Wilde其他文献

Professorin Dr. Annegret Wilde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Annegret Wilde', 18)}}的其他基金

Natural functions of CRISPR-Cas systems in Cyanobacteria
蓝藻中 CRISPR-Cas 系统的自然功能
  • 批准号:
    405891350
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
A light-triggered behavioural switch in cyanobacterial motility
蓝藻运动的光触发行为开关
  • 批准号:
    314674307
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Funktionelle Analyse des cyanobakteriellen Phytochroms Cph2
蓝藻光敏色素 Cph2 的功能分析
  • 批准号:
    5383836
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Horizontal gene transfer of cyanobacterial carbon fixing machinery: Implications for the rise of modern atmospheric oxygen
蓝藻固碳机制的水平基因转移:对现代大气氧气上升的影响
  • 批准号:
    NE/Z00019X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Shifting paradigms to emerging toxins in freshwater cyanobacterial blooms
淡水蓝藻水华中新出现的毒素的范式转变
  • 批准号:
    10912318
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Live-imaging analysis to reveal spatiotemporal dynamics of cyanobacterial light signaling
实时成像分析揭示蓝藻光信号的时空动态
  • 批准号:
    22KJ1374
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Cyanobacterial extracellular metabolomes: overlooked drivers of ecosystem ecology and evolution
蓝藻细胞外代谢组:被忽视的生态系统生态和进化驱动因素
  • 批准号:
    23K19391
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
2023 Mycotoxins and Phycotoxins Gordon Research Conference and Seminar
2023年霉菌毒素和藻类毒素戈登研究会议暨研讨会
  • 批准号:
    10753810
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CAREER: Species Interactions of Coral Reef Benthic Cyanobacterial Mats: Within-Mat Diversity Promotes Both Facilitation and Top-Down Control
职业:珊瑚礁底栖蓝藻垫的物种相互作用:垫内多样性促进便利化和自上而下的控制
  • 批准号:
    2239425
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: ORCC: Carbon fixation in future oceans: experimental adaptation of algal and cyanobacterial CO2-concentrating mechanisms to a changing climate
合作研究:ORCC:未来海洋的碳固定:藻类和蓝藻二氧化碳浓缩机制对气候变化的实验适应
  • 批准号:
    2222519
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: ORCC: Carbon fixation in future oceans: experimental adaptation of algal and cyanobacterial CO2-concentrating mechanisms to a changing climate
合作研究:ORCC:未来海洋的碳固定:藻类和蓝藻二氧化碳浓缩机制对气候变化的实验适应
  • 批准号:
    2222518
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
URoL:EN: Understanding the rule of life facilitating the proliferation of toxic cyanobacterial benthic mats in flowing freshwaters
URoL:EN:了解促进有毒蓝藻底栖垫在流动淡水中增殖的生命规则
  • 批准号:
    2222322
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Enhancing and Redirecting Cyanobacterial Electron Flow (Bioelectricity Spotlight)
增强和重定向蓝藻电子流(生物电聚光灯)
  • 批准号:
    BB/Y001370/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了