Controlled bacterial interaction to increase the antimicrobial efficiency of copper surfaces

控制细菌相互作用以提高铜表面的抗菌效率

基本信息

项目摘要

The bacterial load on contact surfaces in public facilities such as hospitals can be reduced significantly by utilising antimicrobial copper alloys, which are lowering the spreading of infection diseases, particularly those caused by multi-resistant germs. The antimicrobial efficiency of copper containing surfaces is closely linked to their surface properties, which might have a beneficial or inhibitive effect on the bacterial killing.One objective of this project is to quantify the influence of the topographical and chemical properties of the surface on the antimicrobial efficiency of copper and its alloys. Why and how bacteria adhere to modified copper surface as well as how this is linked to the antimicrobial effect of the substrate needs to be thoroughly investigated. Laser-assisted surface processing enables the modulation of both surface topography and chemistry. By this, the purely electro-chemical bacteria killing mechanism is supplemented by topographical contact mechanic effects. Surface structures of similar scale as the bacteria are generated by Direct Laser Interference Patterning (DLIP) in order to selectively increase or reduce their contact area to the substrate. Using different pulse durations (10^-9 to 10^-15 s) provides the possibility to alter the surface chemistry due to varying laser/material interactions (ablation or melting) without significantly changing the produced surface topographies. The influence of this process on the wettability is quantitatively analysed using high-resolution microstructural and chemical characterisation and correlated to the bacterial killing efficiency of the surfaces. In order to achieve a better understanding of the interactions between the bacteria and the substrate, the adhesion of the germs on different modified surfaces is examined by recording force/distance curves using single-bacteria probes in AFM.Assessing the risk emanating from bacteria, which are developing resistances towards modified copper surfaces represents an additional objective of this study. Bacterial strains, which grew resistant to copper during the experiments, are tested for changes in their characteristic pathogenic properties like viability, proliferation and virulence. The examinations are also including the analysis of copper resistance mechanisms of isolated mutated strains by genome- and transcriptome essays. The knowledge gained about the connection of surface properties of copper alloys and their antimicrobial efficiency shall enable a more focused and efficient utilisation of these materials in antimicrobial applications.
通过使用抗菌铜合金,可以显着减少医院等公共设施接触表面的细菌负荷,从而减少感染性疾病的传播,特别是由多重耐药细菌引起的疾病。含铜表面的抗菌效率与其表面特性密切相关,这可能对细菌杀灭产生有益或抑制作用。该项目的一个目标是量化表面的形貌和化学特性对铜及其合金抗菌效率的影响。细菌为何以及如何粘附在改性铜表面上,以及这与基材的抗菌效果有何关系,都需要进行彻底的研究。激光辅助表面处理可以调节表面形貌和化学性质。由此,纯电化学杀菌机制得到了地形接触机械效应的补充。通过直接激光干涉图案化 (DLIP) 生成与细菌规模相似的表面结构,以便有选择地增加或减少细菌与基材的接触面积。使用不同的脉冲持续时间(10^-9 至 10^-15 秒)可以由于不同的激光/材料相互作用(烧蚀或熔化)而改变表面化学性质,而不会显着改变所产生的表面形貌。使用高分辨率微观结构和化学表征定量分析该过程对润湿性的影响,并将其与表面的细菌杀灭效率相关联。为了更好地了解细菌和基材之间的相互作用,通过使用 AFM 中的单细菌探针记录力/距离曲线来检查细菌在不同改性表面上的粘附。评估对改性铜表面产生抗性的细菌所产生的风险是本研究的另一个目标。在实验过程中对铜产生抗药性的细菌菌株被测试其致病特性(如活力、增殖和毒力)的变化。检查还包括通过基因组和转录组论文分析分离突变菌株的铜抗性机制。获得的有关铜合金表面特性与其抗菌效率之间关系的知识将使这些材料在抗菌应用中得到更集中和更有效的利用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Karin Jacobs其他文献

Professorin Dr. Karin Jacobs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Karin Jacobs', 18)}}的其他基金

Koordinatorantrag
协调员申请
  • 批准号:
    5425739
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Slippage and Nanorheology of Simple and Complex Fluids in Confinement
约束条件下简单和复杂流体的滑移和纳米流变
  • 批准号:
    5425500
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Hydrodynamische Instabilitäten und Strukturbildung bei der Entnetzung
去湿过程中的水动力不稳定性和结构形成
  • 批准号:
    5108104
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Morphometric Roughness of Nanostructured Surfaces
纳米结构表面的形态粗糙度
  • 批准号:
    444138055
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

中国棉铃虫核多角体病毒基因组库和分子进化
  • 批准号:
    30540076
  • 批准年份:
    2005
  • 资助金额:
    8.0 万元
  • 项目类别:
    专项基金项目
细菌脂蛋白(BLP)诱导LPS交叉耐受的分子机理研究
  • 批准号:
    30471791
  • 批准年份:
    2004
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bacterial membrane remodelling and the interaction with peptides
细菌膜重塑及其与肽的相互作用
  • 批准号:
    DE230100356
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Inhibiting bacterial cell division by controlling the essential FtsZ/SepH protein-protein interaction
通过控制必要的 FtsZ/SepH 蛋白-蛋白相互作用来抑制细菌细胞分裂
  • 批准号:
    2869043
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
  • 批准号:
    10653587
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Using Common Fund Datasets to Illuminate Drug-Microbial Interactions
使用共同基金数据集阐明药物-微生物相互作用
  • 批准号:
    10777339
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
  • 批准号:
    10607139
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Orthogonal split luciferases for imaging multiplexed cellular behaviors
用于多重细胞行为成像的正交分裂荧光素酶
  • 批准号:
    10730660
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
PIWIL4 and piRNAs in RSV Infection
RSV 感染中的 PIWIL4 和 piRNA
  • 批准号:
    10667951
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
  • 批准号:
    10667971
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Host-Pathogen Interaction in Leptospirosis
钩端螺旋体病中宿主与病原体的相互作用
  • 批准号:
    10643286
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Predicting the Absence of Serious Bacterial Infection in the PICU
预测 PICU 中不存在严重细菌感染
  • 批准号:
    10806039
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了