ロトカ・ヴォルテラ方程式における拡散効果の研究

Lotka-Volterra方程中扩散效应的研究

基本信息

  • 批准号:
    09740081
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

本研究では、互いに競争関係にある2種の生物個体群の挙動に対する2種の移動能力の影響を考察することを目的として、ロトカ・ヴォルテラ型の反応拡散方程式系の解の挙動を数学的に解析する。特に、2種の拡散効果を本質的に際立たせるために、2種の競争力を拮抗させて次の問題を設定する:「一方の種が他方よりも至る所で多いような初期分布から始めたら、必ず少ない方の種が絶滅するのか?」もしも2種とも拡散しなければ、必ず「少数派」の種の方が絶滅してしまうことは、ロトカ・ヴォルテラ(常微分)方程式に対する理論的な解析の結果として知られている。それでは、2種が等しい拡散係数で拡散する場合はどうなるのか?この場合、2種の移動能力が等しいと見なせるから、やはり「少数派」の種の方が絶滅しそうである。そこで、まず数値実験を行い、2種の拡散係数が等しいという条件のもとで、「一方の種が他方の種よりも至る所で多い」ようなさまざまな初期分布に対して、その解の時間発展の様子を調べてみた。たいていの場合にはやはり少数派が絶滅するのだが、中には、「多数派」の方が絶滅してしまう不思議な例も少なからず見られた。この不思議な現象が起こる理由を突き止めるために、拡散項の無いロトカ・ヴォルテラ方程式のセパラトリクスの形状を理論的に調べてみた結果、ロトカ・ヴォルテラ型の2種競争系ではセパラトリクスが常に凸な曲線になっていることを証明できた。この事実と2種競争系に対する比較原理をうまく組み合わせることにより、上記の不思議な現象が起こることを証明することに成功した。上記の現象をdiffusion-induced extinctionと名づけ、この結果を雑誌JJIAMに発表した。
In this study, we investigate the effects of the competition between the two species of organisms on the mobility of the two species of organisms, and analyze the mathematical solution of the inverse dispersion equation system. In particular, the two kinds of scattered fruit are essential to the establishment of the two kinds of competition, and the second problem is set up: "One kind of seed is divided into the other side, and the other side is divided into many kinds." The results of the theoretical analysis of the two kinds of equations are known. 2 kinds of dispersion coefficients are used in case of dispersion. In this case, the two kinds of mobility are equal, and the "minority" is extinct. The initial distribution of the two kinds of dispersion coefficients is adjusted according to the condition that one kind of dispersion coefficient is equal to the other kind of dispersion coefficient. In the middle of the night, the minority is extinct, the majority is extinct, and the minority is extinct. The reason for the occurrence of this incredible phenomenon is that it is impossible to adjust the shape of the equation without the dispersion term. The result of theoretical adjustment is that there are two competitive systems of the equation with the dispersion term. The two competition systems are composed of two parts. The above phenomenon is diffuse-induced extinction, and the result is JJIAM.

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shin-Ichiro Ei et al.: "Dynamics of interfaces in a scalar parabolic equation with variable diffusion coefficients" Japan Journal of Industrial and Applied Mathematics. 14・1. 1-23 (1997)
Shin-Ichiro Ei 等:“具有可变扩散系数的标量抛物线方程中的界面动力学”日本工业和应用数学杂志 14・1(1997 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T-T.Li et al.: "China-Japan Symposium on Reaction-Diffusion Equations and Their Applications and Computational Aspects" World Scientific Publishing Co.Pte.Ltd., 229 (1997)
T-T.Li 等:“中日反应扩散方程及其应用和计算方面的研讨会”,世界科学出版有限公司,229(1997)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masato IIDA et al.: "Diffusion-induced extinction of a superior species in a competition system" Japan Journal of Industrial and Applied Mathematics. 15・2. 233-252 (1998)
Masato IIDA 等人:“竞争系统中优良物种的扩散引起的灭绝”日本工业与应用数学杂志 15・2(1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

飯田 雅人其他文献

Large deviation principle for chaotic dynamical systems
混沌动力系统大偏差原理
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    飯田 雅人;二宮 広和;Yong Moo Chung;Ralph Willox;Yong Moo Chung
  • 通讯作者:
    Yong Moo Chung
On regularity conditions of the p-harmonic map flows
关于p调和映射流的规律性条件
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    飯田 雅人;二宮 広和;Yong Moo Chung;Ralph Willox;Yong Moo Chung;Masato Iida;Masashi Misawa
  • 通讯作者:
    Masashi Misawa
2次写像力学系の Lebesgue 測度に関する大偏差原理
二次映射动力系统勒贝格测度的大偏差原理
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    飯田 雅人;二宮 広和;Yong Moo Chung;Ralph Willox;Yong Moo Chung;Masato Iida;Masashi Misawa;Mariusz Urbanski and Hiroki Sumi;Hirokazu Ninomiya;鄭 容武
  • 通讯作者:
    鄭 容武
Large deviation principle for multimodal maps with weak hyperbolicity
弱双曲性多峰映射大偏差原理
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    飯田 雅人;二宮 広和;Yong Moo Chung
  • 通讯作者:
    Yong Moo Chung
An IST-like solution to the Cauchy problem for a soliton cellular automaton
孤子元胞自动机柯西问题的类似 IST 的解决方案
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    飯田 雅人;二宮 広和;Yong Moo Chung;Ralph Willox
  • 通讯作者:
    Ralph Willox

飯田 雅人的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('飯田 雅人', 18)}}的其他基金

特異極限によって反応拡散系と結びつく方程式系の探究
通过奇异极限连接到反应扩散系统的方程组的探索
  • 批准号:
    13740107
  • 财政年份:
    2001
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
反応拡散系の特異極限としての界面ダイナミクス
界面动力学作为反应扩散系统的奇异极限
  • 批准号:
    11740100
  • 财政年份:
    1999
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
反応拡散方程式系に対する漸近解析
反应扩散方程组的渐近分析
  • 批准号:
    08740089
  • 财政年份:
    1996
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
楕円放物型方程式系の非線形境界値問題に関する研究
椭圆抛物方程组非线性边值问题研究
  • 批准号:
    07740094
  • 财政年份:
    1995
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了