Weakly Supervised Learning for Depth Estimation in Monocular Images
单目图像深度估计的弱监督学习
基本信息
- 批准号:420493178
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Leveraging two types of machine learning methods, namely learning to rank and superset learning, this project develops novel approaches to depth estimation in monocular images. Both approaches merely require "weak" supervision, either in the form of relative ("object B is behind object A") or rough absolute depth information ("object A is close to the camera"), and thereby facilitate the acquisition of training data. As predictions, they produce qualitative depth maps in the form of rankings, specifying the relative order of objects in a scene. This is in contrast to conventional approaches based on statistical regression, which require precise training data and produce (unnecessarily) precise predictions. For both approaches, machine learning algorithms specifically tailored for the problem of depth estimation will be developed. These will be combined with two approaches to feature construction: the systematic (hand-crafted) modeling of monocular depth clues of human perception, and the use of deep neural networks for representation learning. Our qualitative, weakly supervised approaches to monocular depth estimation will be analyzed and compared with each other, as well as with existing approaches based on statistical regression. Last but not least, the benefits of our new algorithms will be investigated for several important applications, namely visual concept classification in images and videos, visual concept detection (by means of localization), and image segmentation.
利用两种类型的机器学习方法,即学习排名和超集学习,该项目开发了单目图像深度估计的新方法。这两种方法都只需要“弱”监督,以相对(“对象B在对象A后面”)或粗略的绝对深度信息(“对象A靠近相机”)的形式,从而便于获取训练数据。作为预测,它们以排名的形式产生定性的深度图,指定场景中对象的相对顺序。这与基于统计回归的传统方法形成对比,后者需要精确的训练数据并产生(不必要的)精确预测。对于这两种方法,将开发专门针对深度估计问题定制的机器学习算法。这些将与两种特征构建方法相结合:人类感知的单眼深度线索的系统(手工)建模,以及使用深度神经网络进行表示学习。我们的定性,弱监督的单目深度估计方法将进行分析和相互比较,以及与现有的基于统计回归的方法。最后但并非最不重要的是,我们的新算法的好处将被调查的几个重要的应用,即视觉概念分类的图像和视频,视觉概念检测(通过本地化),图像分割。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Ralph Ewerth其他文献
Professor Dr. Ralph Ewerth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Ralph Ewerth', 18)}}的其他基金
iART: An interactive analysis- and retrieval-tool for the support of image-oriented research processes
iART:一种交互式分析和检索工具,用于支持面向图像的研究过程
- 批准号:
415796915 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
Development of a software system for automatic scene and person indexing in scientific video archives
开发科学视频档案自动场景和人员索引软件系统
- 批准号:
388420599 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
Aby gets digital: ARAby -An adaptive Retrieval- and Analysistool for the support of image-oriented scientific research
Aby 实现数字化:ARAby - 支持图像导向科学研究的自适应检索和分析工具
- 批准号:
389247364 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
Reflection-driven Artificial Intelligence in Art History – Explainable Hybrid Models for Image Search and Analysis
艺术史中的反思驱动人工智能 – 用于图像搜索和分析的可解释混合模型
- 批准号:
510048106 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Visual Analytics for the image archive of the German Colonial Society (VaBiKo)
德国殖民社会图像档案的可视化分析 (VaBiKo)
- 批准号:
531013489 - 财政年份:
- 资助金额:
-- - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
"TIB AV Analytics" -- Development of a software platform for systematic film and video analysis
“TIB AV Analytics”——开发用于系统电影和视频分析的软件平台
- 批准号:
442397862 - 财政年份:
- 资助金额:
-- - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
相似海外基金
Algebraic Structures in Weakly Supervised Disentangled Representation Learning
弱监督解缠表示学习中的代数结构
- 批准号:
22KJ0880 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Foundations of Unsupervised and Weakly Supervised Learning
无监督和弱监督学习的基础
- 批准号:
RGPIN-2019-06018 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of deepometry for the supervised and weakly supervised learning of imaging data
用于成像数据监督和弱监督学习的深度测量的发展
- 批准号:
2748735 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: SWIFT-SAT: RFI Detection Across Six Orders of Magnitude in Intensity: A Unifying Framework with Weakly Supervised Machine Learning
合作研究:SWIFT-SAT:强度六个数量级的 RFI 检测:弱监督机器学习的统一框架
- 批准号:
2228990 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: RFI Detection Across Six Orders of Magnitude in Intensity: A Unifying Framework with Weakly Supervised Machine Learning
合作研究:SWIFT-SAT:强度六个数量级的 RFI 检测:弱监督机器学习的统一框架
- 批准号:
2228989 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
3D land cover mapping from satellite imagery by weakly supervised learning
通过弱监督学习根据卫星图像绘制 3D 土地覆盖图
- 批准号:
22H03609 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Foundations of Unsupervised and Weakly Supervised Learning
无监督和弱监督学习的基础
- 批准号:
RGPIN-2019-06018 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Solid tumour segmentation via principal axis estimation using weakly supervised adversarial deep learning
使用弱监督对抗性深度学习通过主轴估计进行实体瘤分割
- 批准号:
2565764 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Foundations of Unsupervised and Weakly Supervised Learning
无监督和弱监督学习的基础
- 批准号:
RGPIN-2019-06018 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Weakly supervised learning using domain knowledge and meta-data in life science
使用生命科学领域知识和元数据的弱监督学习
- 批准号:
20H04211 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




