液相マイクロキャビティリングダウン分光法の開発と液相微小空間の超高感度検出

液相微腔衰荡光谱及液相微空间超灵敏检测的发展

基本信息

  • 批准号:
    12750720
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

本年度は研究実施計画に基づけば、昨年度作製した微細流路(マイクロチャネル)を利用したキャビティ(多重反射セル)を用いてキャビティリングダウン(CRD)測定システムを評価する予定になっていた。しかし、昨年度作製したキャビティは測定条件を満足させるに至らなかったので、本年度の最初はキャビティの作製を行なった。1.キャビティの作製昨年度は、加熱式真空蒸着器でガラス基板にクロムを蒸着してキャビティを作製したが、クロムの膜厚にばらつきがあり、キャビティ表面で光散乱され、透過率が悪かった。そこで、本年度はスパッタリングによって、精密に膜厚を制御してガラス表面にクロム薄膜を作製した。これにより、キャビティ表面における光散乱が抑えられ、キャビティを作製することができた。2.測定システムの評価昨年度試作した顕微CRD測定システムを用いて液相CRD測定を行なった。試料はサンセットイエロー(色素)水溶液を用いた。キャビティ長が50〜100μmの場合、溶媒の散乱が大きく、測定はできなかった。キャビティ長が10μmの場合は、CRD信号が得られ、原理的に液相CRD測定が可能であることが実証できた。感度に関しては、吸光法とほとんど変わらず、今後キャビティ長をさらに短くするなどの改良を加えれば、高感度が可能だと考えられる。
This year, we will study the implementation plan, and make use of the micro-channel (CRD) to determine the pre-evaluation of the micro-channel. For the first time in the year, we have to determine the conditions. 1. The preparation of the substrate is carried out in a heated vacuum evaporator. The substrate is prepared in a heated vacuum evaporator. The film thickness of the substrate is determined by the scattering of light on the surface and the transmittance. This year, we have been working on the production of fine film thickness and fine film thickness.これにより、キャビティ表面における光散乱が抑えられ、キャビティを作制することができた。2. Determination of CRD in liquid phase The sample was prepared by using an aqueous solution of pigment. When the wavelength is 50~100 μ m, the solvent is scattered, and the measurement is performed. CRD signal can be obtained when the length of CRD is 10 μ m, and CRD measurement in liquid phase can be realized when CRD signal is obtained. Sensitivity, absorption, and improvement

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
渡慶次学: "Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope : Subsingle-Molecule Determination"Analytical Chemistry. 73. 2112-2116 (2001)
Tokeiji Manabu:“使用热透镜显微镜测定亚八摩尔量的非荧光分子:亚单分子测定”分析化学 73。2112-2116 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
火原彰秀: "Integrated Multilayer Flow System on a Microchip "Analytical Sciences. 17. 89-93 (2001)
Akihide Hihara:“微芯片上的集成多层流系统”分析科学 17. 89-93 (2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

渡慶次 学其他文献

液晶ディスプレイを利用した蛍光偏光イメージング
使用液晶显示器的荧光偏振成像
コエンザイムQ10封入ミトコンドリア標的型DDSの開発およびアセトアミノフェン肝障害モデルへの治療効果の検証
含辅酶Q10的线粒体靶向DDS的研制及对乙酰氨基酚肝损伤模型的治疗效果验证
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    日比野 光恵;山田 勇磨;真栄城 正寿;渡慶次 学;石塚 洋一;原島 秀吉
  • 通讯作者:
    原島 秀吉
マイクロ流体分析
微流体分析
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    日本分析化学会;渡慶次 学;真栄城 正寿;佐藤 記一;佐藤 香枝;火原 彰秀;石田 晃彦
  • 通讯作者:
    石田 晃彦
マイクロ流体デバイスを用いた癌光治療用ミトコンドリア標的型 ナノキャリアの構築
使用微流体装置构建用于癌症光疗的线粒体靶向纳米载体
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    窪田 文佳;山田 勇磨;サトリアルディ-;髙野 勇太;真栄城 正寿;渡慶次 学;原島 秀吉
  • 通讯作者:
    原島 秀吉
脳腫瘍の完全切除を目指した術中遺伝子変異診断
脑肿瘤完全切除术中基因突变诊断
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    笠間 敏博;山道 茜;大岡 史治;加藤 幸成;加藤 彰;平野 雅規;Chalise Lushun;栗本 路弘;近藤 五郎;青木 恒介;鈴木 啓道;本村 和也;加地 範匡;渡慶次 学;松原 年生;鈴木 秀鎌;若林 俊彦;夏目 敦至;馬場 嘉信
  • 通讯作者:
    馬場 嘉信

渡慶次 学的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('渡慶次 学', 18)}}的其他基金

エンジニアード脂質粒子の創成とその応用
工程脂质颗粒的制备及其应用
  • 批准号:
    24H00038
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
タンパク質やウイルスを簡便かつ迅速に測定可能な新しい蛍光偏光免疫分析法の開発
开发一种新的荧光偏振免疫分析方法,可以轻松快速地测量蛋白质和病毒
  • 批准号:
    22K18434
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
心筋細胞の駆動力を電気エネルギーに変換するナノファイバー型バイオ発電素子の開発
开发纳米纤维生物发电装置,将心肌细胞的驱动力转化为电能
  • 批准号:
    16651081
  • 财政年份:
    2004
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Exploratory Research

相似海外基金

Development of a method for measuring the volume of nanolitre droplets in microchannels using phase retrieval holography
开发一种使用相检索全息术测量微通道中纳升液滴体积的方法
  • 批准号:
    23K03658
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of concentration and collection method for exosome using wedge shaped 3D microchannel
利用楔形 3D 微通道开发外泌体浓缩和收集方法
  • 批准号:
    22K14709
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of high-density heat rejection device which realizes ultimately minimum mass flow rate of coolant
开发出最终实现冷却剂最小质量流量的高密度排热装置
  • 批准号:
    21K03909
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimum design and production of next-generation food dispersions, effectively ingestible nutritional and functional ingredients
新一代食品分散体的优化设计和生产,有效摄取营养和功能成分
  • 批准号:
    21H00813
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a Surfactant Separator by Using Taylor Flows in Microchannels
利用微通道中的泰勒流开发表面活性剂分离器
  • 批准号:
    20K04267
  • 财政年份:
    2020
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scientific understanding of long-term corrosion of HLW glass by corrosion tests with Si-isotope
通过硅同位素腐蚀试验科学认识高放玻璃的长期腐蚀
  • 批准号:
    20H02668
  • 财政年份:
    2020
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Radial Expansion microchannel Cooler for High Heat Flux Data Center Cooling
用于高热通量数据中心冷却的径向膨胀微通道冷却器的开发
  • 批准号:
    20K04320
  • 财政年份:
    2020
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental study for medical and industrial applications of vesicles containing microbubbles
含有微泡的囊泡的医疗和工业应用的基础研究
  • 批准号:
    20H00222
  • 财政年份:
    2020
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of innovated cellulose single fiber fabrication by electrostatic alignment of nano fibrils in a micro channel
通过微通道中纳米原纤维的静电排列开发创新的纤维素单纤维制造
  • 批准号:
    19K04187
  • 财政年份:
    2019
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of motile sperm separation device considering dynamic environment of oviduct
考虑输卵管动态环境的活动精子分离装置研制
  • 批准号:
    18K03939
  • 财政年份:
    2018
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了