Data assimilation and model calculations to study chemistry climate interactions and solar impact in the polar stratosphere - Phase 2 (DACCS)

用于研究极地平流层化学气候相互作用和太阳影响的数据同化和模型计算 - 第二阶段(DACCS)

基本信息

项目摘要

This project will investigate the interaction between ozone and atmospheric dynamics in the polar stratosphere with the help of data assimilation of satellite ozone observations and analyses of coupled chemistry climate model (CCM) integrations. There will be a focus on early winter ozone in the polar stratosphere and its relation to meteorological conditions later during winter and total ozone during spring. It has been shown that there exists an unexpectedly strong correlation between polar stratospheric ozone in autumn and early winter and total ozone at high latitudes during spring. Similarly, there exists a close correlation between early winter ozone and meteorological conditions later during winter and spring. The mechanisms for this relation are currently unclear. Moreover, there is some evidence for a possible large solar impact on polar stratospheric ozone in early winter. Here we will analyse in detail a global long-term data set of stratospheric ozone, that is currently being created within the first phase of the DACCS project through the assimilation of SBUV(/2) satellite observations into a chemical transport model. We will in particular analyse the mechanisms that lead to the inter-annual variability of polar ozone during autumn and the persistence of ozone anomalies over the winter. In order to investigate a possible role of anomalies in nitrogen species, we will extend the assimilation to include observations of nitrogen oxides (NOx) from the HALOE/UARS instrument. We will analyse existing chemistry climate model integrations and will perform a set of additional sensitivity runs with a general circulation model to test certain hypotheses of the influence of ozone anomalies on the flux of planetary waves.
该项目将借助卫星臭氧观测数据的同化和耦合化学气候模式(CCM)集成分析,研究极地平流层臭氧与大气动态之间的相互作用。会议将重点讨论初冬极地平流层中的臭氧及其与冬季后期气象条件和春季臭氧总量的关系。研究表明,秋季和初冬极地平流层臭氧与春季高纬度臭氧总量之间存在着意想不到的强相关性。同样,初冬臭氧与冬末和春季的气象条件之间存在密切的相关性。这种关系的机制目前尚不清楚。此外,有一些证据表明,初冬太阳可能对极地平流层臭氧产生巨大影响。在这里,我们将详细分析全球平流层臭氧长期数据集,目前正在通过将SBUV(/2)卫星观测同化为化学传输模型,在DACCS项目第一阶段内创建该数据集。我们将特别分析导致秋季极地臭氧年际变化和冬季臭氧异常持续存在的机制。为了研究氮物种异常的可能作用,我们将扩展同化,包括HALOE/UARS仪器的氮氧化物(NOx)的观测。我们将分析现有的化学气候模式集成,并将执行一组额外的灵敏度运行与大气环流模式,以测试臭氧异常对行星波通量的影响的某些假设。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. John Philip Burrows, since 6/2011其他文献

Professor Dr. John Philip Burrows, since 6/2011的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

双偏振雷达资料在评估优化云参数化方案及改进定量降水预报中的应用
  • 批准号:
    2020A1515010515
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

DeepGreen: A Deep Learning Based Tree-Ring Width Data Model for Paleoclimatic Data Assimilation
DeepGreen:基于深度学习的树木年轮宽度数据模型,用于古气候数据同化
  • 批准号:
    2303530
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Improvement of the meteorological model performance by using strongly coupled data assimilation of wind and aerosol
利用风和气溶胶强耦合数据同化改进气象模型性能
  • 批准号:
    23K13173
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Data Assimilation for Turbulent Flows: Dynamic Model Learning and Solution Capturing
协作研究:湍流数据同化:动态模型学习和解决方案捕获
  • 批准号:
    2206762
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of an ensemble data assimilation method to be introduced into a nation-wide distributed runoff model
开发一种集成数据同化方法,将其引入全国分布式径流模型
  • 批准号:
    22H01600
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Data Assimilation for Turbulent Flows: Dynamic Model Learning and Solution Capturing
协作研究:湍流数据同化:动态模型学习和解决方案捕获
  • 批准号:
    2206741
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: P2C2--Insights into Tropical Pacific Climate from Paleoproxy Data Assimilation into an Intermediate Complexity Dynamical Model
合作研究:P2C2——从古代理数据同化到中等复杂性动力模型中洞察热带太平洋气候
  • 批准号:
    2002452
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: P2C2--Insights into Tropical Pacific Climate from Paleoproxy Data Assimilation into an Intermediate Complexity Dynamical Model
合作研究:P2C2——从古代理数据同化到中等复杂性动力模型中洞察热带太平洋气候
  • 批准号:
    2002469
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multi-Model data assimilation techniques for flood forecasting
洪水预报多模型资料同化技术
  • 批准号:
    2270121
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Combining Machine Learning and Data Assimilation to infer model errors
结合机器学习和数据同化来推断模型错误
  • 批准号:
    2267924
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Integrating in-situ detection technologies and developing data assimilation strategies to improve forecast accuracy and assess climate change impacts for Microcystis blooms in Lake Erie
整合原位检测技术并制定数据同化策略,以提高预测准确性并评估气候变化对伊利湖微囊藻水华的影响
  • 批准号:
    10427317
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了