Multi-Model data assimilation techniques for flood forecasting
洪水预报多模型资料同化技术
基本信息
- 批准号:2270121
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The annual cost due to flood damage in Europe is expected to rise to 100 billion EUR by the year 2080, due to a combination of climate change and socio-economic growth. The EU-funded European Flood Awareness System (EFAS) is an operational system that monitors and forecasts floods across Europe. EFAS forecasts increase the lead time available for flood-preparedness measures, particularly for large river basins. The goal of this PhD project is to develop new mathematical methods to improve such flood forecasts by combining observational data with computational model output, using the sophisticated technique known as data assimilation. EFAS consists of a regional hydrological model, forecasting the flow of water in large rivers across Europe (known as streamflow forecasts). This computational model is driven by an ensemble of rainfall forecasts derived from numerical weather prediction. Where river gauge data is available, the resulting streamflow forecasts are statistically calibrated to match the observations locally. Currently, there are approximately 800 locations that are calibrated in this way. Nevertheless, the value of the corrections is limited, as they do not take into account the spatial relationships that naturally exist between points up- and downstream in the river network. Furthermore, the current calibration system is only able to deal with flow gauge observations, despite the availability of other observation-types such as water height information. In contrast, data assimilation provides a mathematical framework for state estimation and calibration that allows for both optimal combination of heterogeneous observation types, as well as non-local updates, where observation influence extends spatially, according to dynamical relationships between locations. The aim of the project is to develop a data assimilation system for EFAS forecast calibration. While ensemble data assimilation techniques are well established in numerical weather prediction applications, their use for hydrological applications is in its infancy. Thus, the development of an assimilation system for EFAS will require the development of new mathematics to address the challenges of a new application:1. Weighting matrix regularization along a river network. In data assimilation, observations and model data are combined, taking account their relative uncertainties. The relationships between uncertainties at different spatial locations are expressed in a weighting matrix, known as an error covariance matrix. The forecast error covariance matrix can be estimated directly from the EFAS ensemble output. However, the estimate is likely to be noisy due to the limited ensemble size. To ensure that the data assimilation results are not contaminated by noise, it is necessary to regularize (or recondition) the weighting matrix. A number of regularization methods exist in the mathematical finance, uncertainty quantification and numerical linear algebra literature. The student will study and adapt these techniques to the geometry of flood forecasting, where the dynamically consistent notion of distance is along the river network, rather than "as the crow flies". 2. Multi-model ensemble data assimilation. Existing practical ensemble data assimilation techniques assume that each ensemble forecast is carried out for the same domain (geographical area) and with the same underlying climatology. However, the EFAS system is driven by a multi-model ensemble of rainfall forecasts, and consequently, EFAS computations are run on different domains. The student will develop new mathematical theory for multi-model data assimilation, based on Gaussian mixture distributions from statistics. They will investigate the practical numerical implementation of the new methods, first through idealized modelling, and then using EFAS data.
由于气候变化和社会经济增长的共同作用,预计到2080年,欧洲每年因洪水造成的损失将增加到1000亿欧元。欧洲洪水预警系统(European Flood Awareness System,EFAS)是一个监测和预测欧洲洪水的实用系统。欧洲洪水预报系统的预报增加了防洪准备措施的准备时间,特别是对大型河流流域。这个博士项目的目标是开发新的数学方法,通过将观测数据与计算模型输出相结合,使用称为数据同化的复杂技术来改善洪水预报。EFAS由一个区域水文模型组成,预测欧洲大江大河的水流(称为径流预测)。这个计算模式是由数值天气预报得出的降雨预报集合驱动的。在有河规数据的地方,所得到的径流预测会经过统计校准,以匹配当地的观测结果。目前,大约有800个地点以这种方式进行校准。然而,校正的价值是有限的,因为它们没有考虑到河流网络中上游和下游点之间自然存在的空间关系。此外,目前的校准系统只能处理流量计观测,尽管其他观测类型,如水位信息的可用性。相比之下,数据同化提供了一个数学框架的状态估计和校准,允许异质观测类型的最佳组合,以及非本地更新,其中观测的影响在空间上延伸,根据位置之间的动态关系。该项目的目的是开发一个用于EFAS预报校准的数据同化系统。虽然集合数据同化技术在数值天气预报应用中已经很成熟,但其在水文应用中的应用仍处于起步阶段。因此,EFAS同化系统的开发将需要开发新的数学来应对新应用的挑战:1。沿着河网的权矩阵正则化。在数据同化中,将观测数据和模式数据结合起来,同时考虑到它们的相对不确定性。不同空间位置的不确定性之间的关系用加权矩阵表示,称为误差协方差矩阵。预报误差协方差矩阵可以直接从EFAS集合输出估计。然而,由于有限的系综大小,估计可能是有噪声的。为了保证资料同化结果不受噪声污染,有必要对加权矩阵进行正则化(或重新调整)。在数学金融学、不确定性量化和数值线性代数文献中存在许多正则化方法。学生将学习和调整这些技术的洪水预报,其中的距离动态一致的概念是沿着河流网络的几何形状,而不是“乌鸦飞”。2.多模式集合资料同化。现有的实际集合数据同化技术假设每个集合预报是针对同一域(地理区域)和相同的基本气候进行的。然而,EFAS系统是由多模式集成的降雨预报,因此,EFAS计算运行在不同的域。学生将开发新的数学理论多模式数据同化,基于高斯混合分布统计。他们将研究新方法的实际数值实现,首先通过理想化建模,然后使用EFAS数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Study of electrified post-sunset medium-scale traveling ionospheric disturbances at mid-latitudes: a multi-layer model and a multi-source data investigation
中纬度地区带电日落后中尺度移动电离层扰动研究:多层模型和多源数据调查
- 批准号:
23K19066 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development of bioinformatic pipelines for multi omics data to model the effect of small molecule driven lipid metabolism on autophagy regulation
开发多组学数据的生物信息学管道,以模拟小分子驱动的脂质代谢对自噬调节的影响
- 批准号:
BB/Y512540/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Training Grant
A multi-level bias correction model for bulk and single-cell CUT&Tag data
用于批量和单细胞切割的多级偏差校正模型
- 批准号:
10645980 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Building the Science of Evidence-Informed Prevention Policy: A Multi-level Model for Supporting Substance Misuse Prevention
建立循证预防政策的科学:支持药物滥用预防的多层次模型
- 批准号:
10660188 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A multi-modal, brain-wide atlas of astrocyte diversity across developmental stages and model species
跨发育阶段和模型物种的星形胶质细胞多样性的多模式、全脑图谱
- 批准号:
10677211 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
- 批准号:
10798520 - 财政年份:2023
- 资助金额:
-- - 项目类别:
EAGER: Multi-objective generation of synthetic time series data to boost model robustness and data privacy
EAGER:合成时间序列数据的多目标生成,以提高模型的稳健性和数据隐私
- 批准号:
2240615 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311597 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant