Energy-painted ion radiography for precision radiotherapy

用于精准放射治疗的能量涂装离子射线照相

基本信息

项目摘要

The clinical potential of the highly precise ion radiotherapy is often compromised by uncertainties on the actual stopping power of patient's tissues and its distribution in space. We aim to develop a method to address these uncertainties by a high accuracy quantitative on-couch imaging based on ion radiography. While the majority of ion radiographic approaches uses protons, our method will be based on largely unexploited helium ions which have the potential to be the optimal radiation modality for ion imaging. The imaging device to be built will exploit a cutting-edge radiation detection technology developed at CERN called Timepix3. It enables to detect single ions and access their properties. The radiological thickness of the imaged object will be derived from the energy deposition measurement in a single thin detector behind the imaged object. In order to image the whole span of treated body part's thicknesses, a unique beam-energy painting method will be developed. Imaging times of a few seconds will be reached with a multi-energy operation of the synchrotron, which will enable to complete the image within a single accelerator spill. In contrast to the current ion imaging methods, the new method will feature a doubled dynamic range, allowing to image even the thickest treated body parts. For this the energy range of the accelerator has to be significantly extended beyond the currently maximal energy for helium. Furthermore, it has to be ensured that the beam diagnostics copes with the low beam intensities demanded to keep the imaging dose low. To guarantee high spatial resolution, an ion tracking system will be implemented in the imaging device. In order to reach a real impact on clinics, the imager will furthermore feature a compact size, easy manageability, high patient's safety and comfort. For a maximal exploitation of the large amounts of measured data, a dedicated data processing chain and advanced image reconstruction algorithms will be developed. The performance of the new imaging method will be evaluated quantitatively in clinical conditions at the Heidelberg Ion Beam Therapy Center, using in-house built body models. Moreover, the versatility of the method will allow a direct comparison of the accuracy of helium-based images with images based on other ion types like protons and carbon ions.This image guidance method, being a significant step ahead of the current status of medical ion beam imaging, will open the possibility for better tumor targeting in the clinics, leading to lower dose to healthy tissues. In addition to the expected decrease of the treatment complication rate, it will allow to apply higher dose to the tumor. In this way it might represent an important step towards treatments of radioresistant tumors, boosting of the full exploitation of the potential of the high-tech ion beam radiotherapy for the benefit of cancer patients.
高精度离子放射治疗的临床潜力经常受到患者组织的实际阻止能力及其在空间分布的不确定性的影响。我们的目标是开发一种方法,通过基于离子射线照相的高精度床上定量成像来解决这些不确定性。虽然大多数离子照相方法使用质子,但我们的方法将基于大部分未开发的氦离子,这些离子有可能成为离子成像的最佳辐射方式。即将建造的成像设备将利用欧洲核子研究中心开发的尖端辐射探测技术,称为Timepx3。它能够检测单个离子并访问它们的属性。成像物体的辐射厚度将从成像物体后面的单个薄探测器中的能量沉积测量中得出。为了对处理后的身体部位厚度的整个跨度进行成像,将开发一种独特的束流-能量涂抹方法。通过同步加速器的多能量操作,成像时间将达到几秒,这将使您能够在单个加速器溢出的情况下完成图像。与目前的离子成像方法相比,新方法的动态范围将翻一番,即使是最厚的经过处理的身体部位也可以成像。为此,加速器的能量范围必须大大超出目前氦的最大能量。此外,必须确保束流诊断能够应对保持低成像剂量所需的低束流强度。为了保证高空间分辨率,成像设备中将安装离子跟踪系统。为了达到真正的临床影响,成像仪还将进一步具有体积紧凑、易于管理、患者安全性和舒适性高的特点。为了最大限度地利用大量的测量数据,将开发专用的数据处理链和先进的图像重建算法。新成像方法的性能将在海德堡离子束治疗中心的临床条件下使用内部构建的身体模型进行定量评估。此外,该方法的多功能性将允许直接比较基于氦的图像与基于其他离子类型的图像的准确性,如质子和碳离子。这种图像引导方法是当前医学离子束成像的重要进步,将为临床更好地进行肿瘤靶向提供可能性,从而降低对健康组织的剂量。除了治疗并发症发生率的预期下降外,它还将允许对肿瘤应用更高的剂量。这样,它可能代表着朝着治疗放射抵抗肿瘤迈出的重要一步,促进了高科技离子束放射治疗潜力的充分发挥,造福于癌症患者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Oliver Jäkel其他文献

Professor Dr. Oliver Jäkel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Oliver Jäkel', 18)}}的其他基金

Eine neue Bildgebungstechnik für die Strahlentherapie mit Ionenstrahlen: Die Ionenstrahlbasierte Computertomographie
离子束放射治疗的新成像技术:基于离子束的计算机断层扫描
  • 批准号:
    216242133
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Koordination und Management
协调与管理
  • 批准号:
    85275666
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Clinical Research Units
HELIOS – Developing a HELium Imaging Oncology Scanner for Range Guided Radiotherapy (RGRT) for Non-Small Cell Lung Carcinoma (NSCLC)
HELIOS â 开发用于非小细胞肺癌 (NSCLC) 范围引导放射治疗 (RGRT) 的氦成像肿瘤扫描仪
  • 批准号:
    457509854
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    New Instrumentation for Research
PromptFLASH: Real-time In-vivo FLASH dosimetry for ion beams with Prompt Gamma X-ray Spectroscopy
PromptFLASH:使用 Prompt Gamma X 射线光谱仪对离子束进行实时体内 FLASH 剂量测定
  • 批准号:
    528201597
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    New Instrumentation for Research

相似海外基金

BRC-BIO: Investigating Color and Pattern Diversity in Painted Turtles
BRC-BIO:研究锦龟的颜色和图案多样性
  • 批准号:
    2233233
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Fidelity to summer habitat for Painted Turtle
忠于锦龟夏季栖息地
  • 批准号:
    572253-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Chinese Painted Silks: Craftmanship and Fashion in Eighteenth-Century Britain
中国彩绘丝绸:十八世纪英国的工艺与时尚
  • 批准号:
    2747902
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Characterization of the energy budget of western painted turtle hepatocytes during anoxia
缺氧期间西方锦龟肝细胞能量收支的表征
  • 批准号:
    547362-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Sustainable Curing: exploring alternative technologies for painted steel products
可持续固化:探索涂漆钢产品的替代技术
  • 批准号:
    2744818
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
re-imaging the Mongol Palace Banquet and Elegant Gathering: Sensoria of Painted Silks, Gift Giving and Foodways at the Mid-Yuan Court
再现蒙古宫廷宴会与雅集:中元宫廷的彩绘感官、送礼与美食
  • 批准号:
    2727825
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Natural Mechanisms of Anoxia Tolerance in Brain and Liver of the Painted Turtle and Goldfish
锦龟和金鱼大脑和肝脏耐缺氧的自然机制
  • 批准号:
    RGPIN-2020-05116
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Validation of the Anesthetic - Alfaxalone for use in Western Painted Turtle Brain Sheet Electrophysi
麻醉剂 - 阿法沙酮用于西方锦龟脑片电生理的验证
  • 批准号:
    561859-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Natural Mechanisms of Anoxia Tolerance in Brain and Liver of the Painted Turtle and Goldfish
锦龟和金鱼大脑和肝脏耐缺氧的自然机制
  • 批准号:
    RGPIN-2020-05116
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Investigation into the release of microplastics and metallic ions into the environment during the long-term degradation of pre-painted metals
预涂金属长期降解过程中微塑料和金属离子释放到环境中的调查
  • 批准号:
    2594921
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了