Substructures of Large Objects - Extremality, Typicality, and Complexity
大物体的子结构——极值性、典型性和复杂性
基本信息
- 批准号:428212407
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Independent Junior Research Groups
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A fundamental theme in many areas of mathematics arises from the following type of question: Given a ‘large’ object, does it contain particular ‘small’ or ’elementary’ substructures? In addition, if so, how many given substructures does it contain and into which ‘elementary’ objects can the ‘large’ object be decomposed? To list only a few prominent examples, this includes the prime factorization of numbers, sphere packings in the d-dimensional space, matrix factorizations into particular types of matrices, Lebesgue's decomposition theorem for measures, and the Levy-Ito decomposition of Levy processes.The aim of this project is to investigate such questions in different aspects of combinatorics and geometry including the following themes:1. Subgraph containment: Given a target graph H, we ask for sufficient conditions that guarantee the containment of H as a subgraph in a host graph G. This is arguably among the most fundamental questions in graph theory.2. Decompositions: Given a list of target graphs H1,...,Hr and a host graph G, we investigate whether the edge set of G can be decomposed into edge-disjoint copies of H1,…,Hr.3. Hypergraph matchings: One of the most elementary and most investigated substructures in hypergraphs are matchings. In graphs, we understand matchings well both in a structural and algorithmic point of view. Hypergraph matchings display a considerably more complex structure and are significantly less well understood. This is not very surprising when considering that various famous open problems in combinatorics (including decomposition problems) can be rephrased as a hypergraph (perfect) matching problem.4. Sphere packings: Asking for the densest packings of non-overlapping unit spheres in the d-dimensional space is possibly one of the oldest and most well-known problems in mathematics. In his famous list of 23 problems published 1900, Hilbert asked in his 18th problem for the densest sphere packing in three dimensions. The sphere packing density has been determined only for dimension 1, 2, 3, 8, and 24 and stays elusive for essentially any other dimension.
许多数学领域的一个基本主题源于以下类型的问题:给定一个“大”物体,它是否包含特定的“小”或“基本”子结构?此外,如果是,它包含多少给定的子结构,以及“大”对象可以分解成哪些“基本”对象?仅列出几个突出的例子,这包括数的质因数分解,d维空间中的球体填充,矩阵分解为特定类型的矩阵,测度的Lebesgue分解定理,以及Levy过程的Levy- ito分解。这个项目的目的是在组合学和几何的不同方面研究这些问题,包括以下主题:1。子图的包含性:给定一个目标图H,我们要求得到保证H作为主图g中的子图的包含性的充分条件。这可以说是图论中最基本的问题之一。分解:给定目标图的列表H1,…,Hr和一个主图G,我们研究了G的边集是否可以分解成H1,…,Hr.3的边不相交的副本。超图匹配:超图中最基本和研究最多的子结构之一是匹配。在图中,我们从结构和算法的角度都很好地理解匹配。超图匹配显示了相当复杂的结构,并且明显不太容易理解。当考虑到组合学中各种著名的开放问题(包括分解问题)可以被重新表述为超图(完美)匹配问题时,这并不奇怪。球体填充:要求在d维空间中非重叠单位球体的最密集的填充可能是数学中最古老和最著名的问题之一。在1900年发表的著名的23个问题中,希尔伯特在他的第18个问题中提出了三维空间中密度最大的球体排列。球体填充密度只在维度1、2、3、8和24上确定,而在其他维度上基本上是难以捉摸的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Felix Joos其他文献
Professor Dr. Felix Joos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Felix Joos', 18)}}的其他基金
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase II: Automated Perception for Robotic Chopsticks Manipulating Small and Large Objects in Constrained Spaces
SBIR 第二阶段:机器人筷子在受限空间中操纵小型和大型物体的自动感知
- 批准号:
2321919 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Large Combinatorial Objects: Extremal Structure and Quasirandomness
大型组合对象:极值结构和拟随机性
- 批准号:
RGPIN-2021-02460 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
SBIR Phase I: Automated Perception for Robotic Chopsticks Manipulating Small and Large Objects in Constrained Spaces
SBIR 第一阶段:机器人筷子在受限空间中操纵小型和大型物体的自动感知
- 批准号:
2051644 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Large Combinatorial Objects: Extremal Structure and Quasirandomness
大型组合对象:极值结构和拟随机性
- 批准号:
RGPIN-2021-02460 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Information Fusion for Tracking Objects in Large-Scale Sensor Network
大规模传感器网络中跟踪物体的信息融合
- 批准号:
DE210101181 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Large Combinatorial Objects: Extremal Structure and Quasirandomness
大型组合对象:极值结构和拟随机性
- 批准号:
DGECR-2021-00024 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Electrically-small platform-based antennas and systems with applications in wireless communication of moving large objects
基于电气小型平台的天线和系统,应用于移动大型物体的无线通信
- 批准号:
558213-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Manipulation of large-area objects using micro-liquid capillary force based on the pattern of hydrophilic and hydrophobic surfaces
基于亲水和疏水表面图案,利用微液体毛细管力操纵大面积物体
- 批准号:
20K20981 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Enabling Chemical Tomography of Large Objects
实现大型物体的化学断层扫描
- 批准号:
106003 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Collaborative R&D
Research of transient objects and dark matter with large-sized Cherenkov telescopes
用大型切伦科夫望远镜研究瞬变物体和暗物质
- 批准号:
20KK0067 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))