Packing and covering of graphs
图的包装和覆盖
基本信息
- 批准号:339933727
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Partitions and packings are central concepts in mathematics: How many prime factors does an integer have? How dense can balls be packed? Is a certain geometric shape suitable to tile the plane?This project deals with questions of this type arising in discrete mathematics. A graph is an object which consists of a (finite) set V of vertices and links between pairs of vertices (called edges). The question when a (large) graph G can be partitioned into a given family of small graphs is central in discrete mathematics and has already been investigated since the 19th century. There are numerous applications in statistical design theory, coding theory, and algebraic design theory. Recently, probabilistic methods have led to spectacular breakthroughs in this area. One aim of this project is to further develop these methods in order to gain partitions into sparse but very large graphs (such as spanning trees or unions of cycles). This is motivated for instance by the famous tree packing conjecture of Gyárfás and Lehel from 1976 and the Oberwolfach problem.Instead of asking for a (complete) partition into objects of a particular type, it is also very natural to ask for a maximal packing: How many objects with a certain property can be packed into a (large) different object? (For example: How many balls can be packed into a (large) box?) Such maximisation problems are frequently linked to a dual minimisation problem. This link is well-known in the context of linear optimisation. In graph theory, there is a link between a maximal packing and a minimal set of vertices which meet every copy of the packed graphs, that is, which cover these graphs. Another aim of this project is the investigation of this duality between packing and covering parameters in graphs; in particular, the Erdös-Pósa property of graph families.
划分和填充是数学中的核心概念:一个整数有多少个素因数?球的密度可以有多大?某一几何形状适合于平铺平面吗?本课题研究的是离散数学中出现的这类问题。图是由(有限的)顶点集合V和顶点对之间的链接(称为边)组成的对象。一个(大)图G何时可以划分成一个给定的小图族的问题是离散数学的核心问题,自19世纪以来一直被研究。在统计设计理论、编码理论和代数设计理论中有着广泛的应用。最近,概率方法在这一领域取得了惊人的突破。这个项目的一个目标是进一步开发这些方法,以便将分区划分成稀疏但非常大的图(如生成树或圈的并)。这是由著名的树包装猜想和Oberwolfach问题引起的,例如1976年S和Lehel的树包装猜想。与其要求将(完全)划分为特定类型的对象,要求最大填充也是非常自然的:有多少具有某种性质的对象可以被包装成(大)不同的对象?(例如:一个(大)盒子可以装多少球?)这样的最大化问题经常与对偶最小化问题联系在一起。在线性优化的背景下,这种联系是众所周知的。在图论中,最大填充和满足每个压缩图副本的最小顶点集之间存在联系,也就是说,覆盖这些图。这个项目的另一个目的是研究图中填充参数和覆盖参数之间的对偶性,特别是图族的ErdöS-Pósa性质。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On kissing numbers and spherical codes in high dimensions
- DOI:10.1016/j.aim.2018.07.001
- 发表时间:2018-03
- 期刊:
- 影响因子:1.7
- 作者:Matthew Jenssen;Felix Joos;Will Perkins
- 通讯作者:Matthew Jenssen;Felix Joos;Will Perkins
Spanning trees in randomly perturbed graphs
随机扰动图中的生成树
- DOI:10.1002/rsa.20886
- 发表时间:
- 期刊:
- 影响因子:1
- 作者:F. Joos;J. Kim
- 通讯作者:J. Kim
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Felix Joos其他文献
Professor Dr. Felix Joos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Felix Joos', 18)}}的其他基金
Substructures of Large Objects - Extremality, Typicality, and Complexity
大物体的子结构——极值性、典型性和复杂性
- 批准号:
428212407 - 财政年份:
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
相似海外基金
Research on algorithms for domination and covering of large-scale graphs
大规模图的支配与覆盖算法研究
- 批准号:
22K11898 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on limit theorems for random walks on covering graphs
覆盖图随机游走极限定理研究
- 批准号:
19K23410 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
A study on random walks on covering graphs via discrete geometric analysis and stochastic analysis
基于离散几何分析和随机分析的覆盖图随机游走研究
- 批准号:
18J10225 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Set covering polyhedra graphs, and matroids
集合覆盖多面体图和拟阵
- 批准号:
238811-2006 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Set covering polyhedra graphs, and matroids
集合覆盖多面体图和拟阵
- 批准号:
238811-2006 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Set covering polyhedra graphs, and matroids
集合覆盖多面体图和拟阵
- 批准号:
238811-2006 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative research on degree conditions for packing and covering problems on graphs
图上包装覆盖问题度条件的协同研究
- 批准号:
0852452 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Engineering of Matching and Covering Algorithms in Large Graphs and Hypergraphs
大图和超图的匹配和覆盖算法工程
- 批准号:
47756257 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Priority Programmes
Set covering polyhedra graphs, and matroids
集合覆盖多面体图和拟阵
- 批准号:
238811-2006 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative research on degree conditions for packing and covering problems on graphs
图上包装覆盖问题度条件的协同研究
- 批准号:
0650784 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant