Defect characterisation in FRP shell components using derivative-based optimisation methods

使用基于导数的优化方法表征 FRP 壳体组件的缺陷

基本信息

项目摘要

Non-destructive testing of components is in many cases performed using ultrasonic techniques. Standardised inspection techniques generally allow drawing conclusions on the reflectivity or sound attenuation of a defect, rather than providing information about its size and shape. To overcome this restriction imaging techniques are applied to reconstruct defects in voluminous components. These techniques, however, can not necessarily be applied to modern plate-like or shell-shaped components made of fibre-reinforced plastics (FRP) which exhibit anisotropic acoustic properties. The application of inverse techniques for defect reconstruction so far fails due to the lack of efficient techniques to simulate the propagation of ultrasound (forward models) in these structures. The reason for this is the unfavourable ratio of wavelength to the components’ dimensions which brings well-established numerical techniques to their limits since these discretise the whole inspection volume (e.g. FEM). The proposed research project applies novel semi-analytical approaches for efficient simulation of guided wave ultrasound propagation. Analytical optimisation strategies will complement these. The approach will result in an inverse technique which allows for the reconstruction of defect geometries, sizes, and positions using ultrasonic data acquired in shell-shaped anisotropic components. To achieve this goal a cooperative project is planned to interconnect various approaches. Algorithmic Differentiation (AD) to solve the inverse problem will be applied as well as the Scaled Boundary Finite Element Method (SBFEM) for simulating the wave propagation. Using different discretisation scenarios SBFEM provides benefits for the extremely efficient simulation of transducer-generated ultrasonic wave propagation in defect-free areas, as well as wave field interaction with defects. To empower the technique for the addressed issue, it has to be expanded and modified accordingly (e.g. by considering anisotropy and damping as well as optimising the meshing). The AD procedures for calculating derivative information for the optimisation process also have to be expanded and adapted to the simulation code. Both techniques will be adapted separately and then be combined. Experiments will support the investigation. In the first stage of the project, the development and the validation will be performed for isotropic plates. During a second stage - to be applied for after successful validation of the first phase - the project gradually will be expanded to cope with anisotropic shell-shaped structures with variable cross-sections. Sensitivity studies will evaluate the reliability of the inverse approach. The primary goal is the development of a reliable imaging technique for defect reconstruction for the inspection of FRP structures, but moreover, the scientific weight of the project also links to the further development of the numerical simulation and optimisation techniques under concern.
在许多情况下,部件的无损检测是使用超声波技术进行的。标准化的检测技术通常允许对缺陷的反射率或声音衰减得出结论,而不是提供关于其大小和形状的信息。为了克服这一限制,成像技术被应用于重建体积庞大的部件中的缺陷。然而,这些技术并不一定适用于由纤维增强塑料(FRP)制成的具有各向异性声学特性的现代板状或壳状组件。到目前为止,由于缺乏有效的技术来模拟超声在这些结构中的传播(正向模型),用于缺陷重建的反向技术的应用失败。造成这种情况的原因是波长与部件尺寸的不利比例,这使得成熟的数值技术达到了它们的极限,因为这些技术使整个检查体积离散(例如有限元)。提出的研究项目应用新的半解析方法来有效地模拟导波超声传播。分析优化策略将对这些进行补充。该方法将产生一种逆技术,该技术允许使用在壳形各向异性部件中获取的超声数据来重建缺陷几何形状、大小和位置。为实现这一目标,计划开展一个合作项目,将各种方法相互联系起来。用算法微分法(AD)求解反问题,用尺度边界有限元方法(SBFEM)模拟波的传播。使用不同的离散化方案,SBFEM可以非常有效地模拟换能器产生的超声波在无缺陷区域的传播,以及波场与缺陷的相互作用。为了使该技术适用于所解决的问题,必须对其进行相应的扩展和修改(例如,通过考虑各向异性和阻尼以及优化啮合)。用于计算优化过程的导数信息的AD程序也必须扩展并适应模拟代码。这两种技术将分别进行调整,然后组合在一起。实验将支持这项调查。在项目的第一阶段,将对各向同性板进行开发和验证。在第二阶段--将在第一阶段成功验证后申请--该项目将逐步扩大,以处理变截面的各向异性壳形结构。敏感性研究将评估反向方法的可靠性。主要目标是开发一种可靠的成像技术,用于检查玻璃钢结构的缺陷重建,但此外,该项目的科学权重也与所关注的数值模拟和优化技术的进一步发展相联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Jens Prager其他文献

Dr. Jens Prager的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A Pathway to the Confirmation and Characterisation of Habitable Alien Worlds
确认和描述宜居外星世界的途径
  • 批准号:
    MR/Y011759/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Integrated Tip-Enabled Nanofabrication and Characterisation at Atomic Scale
集成尖端纳米加工和原子级表征
  • 批准号:
    LE240100015
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Molecular characterisation of pore-forming proteins as pest control agents
作为害虫防治剂的成孔蛋白的分子表征
  • 批准号:
    DE240100885
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
  • 批准号:
    MR/Y008693/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Mechanistic characterisation of enhancer hijacking: identifying essential and targetable chromatin interactions
增强子劫持的机制表征:识别必要的和可靶向的染色质相互作用
  • 批准号:
    MR/Y011902/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Structural Characterisation of Bacteriophage Proteins Involved in Host Hijacking of Enterococcus Species
参与肠球菌宿主劫持的噬菌体蛋白的结构表征
  • 批准号:
    BB/Z515188/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
NanoRAM: Emerging Nanotools for Soft Matter Characterisation and Manipulation
NanoRAM:用于软物质表征和操纵的新兴纳米工具
  • 批准号:
    EP/Y032306/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Ultra-fast structure-property characterisation of materials
材料的超快速结构-性能表征
  • 批准号:
    LE240100036
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Characterisation of a novel disease immunity pathway in plants
植物新型疾病免疫途径的表征
  • 批准号:
    DP240102982
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了