Exploring synthetic approaches to non-alternant ring topologies in graphene nanostructures
探索石墨烯纳米结构中非交替环拓扑的合成方法
基本信息
- 批准号:429265950
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphene has attracted extensive research interests since the ground breaking report by Geim and Novoselov in 2004. In the years to follow, graphene has been found to possess a number of exceptional properties. In particular, its excellent charge carrier mobility has rendered graphene one of the most promising materials for future use in nanoelectronics. However, graphene is a semimetal without a bandgap which precludes its application in digital transistors. This makes it crucial to find a way of opening a bandgap before graphene-based electronic devices can be developed. The most prominent way is to realize quantum confinement of charge carriers in one-dimensional semiconducting stripes of graphene with nanometer-scale width – namely, graphene nanoribbons (GNRs). Two main methods have been recently established to prepare GNRs, namely “top-down” and “bottom-up” approaches. The “bottom-up” approach, a convergent, total-synthetic approach inspired by organic chemistry, provides GNRs with atomically precise edge structures and well-defined width. This bottom-up approach can be conducted classically in a solution-mediated environment or on noble metal substrates such as gold, silver or copper. Another pathway to influence the electronic structure of graphene is to introduce the imperfections/defects in the basal plane of graphene. Theoretical calculations have described that topological defects in graphene strongly affect its electronic, optical, chemical, thermal and mechanical properties. The pentagon-heptagon pair is one of the reasonable defect models from the view point of energetic stability and can be induced by atom dislocation. Existence of topological defects have been experimentally confirmed using transmission electron microscopy (TEM) and scanning tunneling microscopy (STM) studies, and to this end, most such studies have hitherto focused only on their structural characterization. Consequently, physico-chemical aspects of topological defects in graphene remain poorly understood, which motivates a thorough understanding both from a fundamental and applied perspective. In this joint Swiss-German proposal, we bring together the TUD and EMPA, to establish a new line of research in atomically-precise synthesis of non-hexagonal rings in nanographenes and GNRs, both in the solution and on the surface, as a route to impart novel properties such as large open-shell biradical character, increased chemical activities and new electronic functionalities. This proposal aims at stimulating mobility of researchers between both countries within this key and strategic field of research with potential economic importance.
自2004年Geim和Novoselov的开创性报告以来,石墨烯吸引了广泛的研究兴趣。在接下来的几年里,人们发现石墨烯具有许多特殊的性质。特别是,其优异的电荷载流子迁移率使石墨烯成为未来用于纳米电子学的最有前途的材料之一。然而,石墨烯是没有带隙的半金属,这排除了其在数字晶体管中的应用。这使得在开发石墨烯电子器件之前找到一种打开带隙的方法变得至关重要。最突出的方法是在具有纳米级宽度的石墨烯的一维半导体条带中实现电荷载流子的量子限制-即石墨烯纳米带(GNRs)。最近确定了两种主要方法来编制GNR,即“自上而下”和“自下而上”方法。“自下而上”的方法,一种受有机化学启发的收敛的全合成方法,为GNR提供了原子精确的边缘结构和明确定义的宽度。这种自下而上的方法可以经典地在溶液介导的环境中或在贵金属基底如金、银或铜上进行。影响石墨烯的电子结构的另一途径是在石墨烯的基面中引入缺陷/缺陷。理论计算已经描述了石墨烯中的拓扑缺陷强烈地影响其电子、光学、化学、热和机械性质。从能量稳定性的观点来看,五边形-七边形对是合理的缺陷模型之一,并且可以由原子位错引起。使用透射电子显微镜(TEM)和扫描隧道显微镜(STM)研究已通过实验证实了拓扑缺陷的存在,为此,迄今为止大多数此类研究仅关注其结构表征。因此,石墨烯中拓扑缺陷的物理化学方面仍然知之甚少,这激发了从基础和应用角度的透彻理解。在这项瑞士-德国联合提案中,我们将TUD和EMPA结合在一起,建立了一条新的研究路线,在溶液和表面上以原子精确的方式合成纳米石墨烯和GNR中的非六方环,作为赋予新特性的途径,例如大开壳双自由基特性,增加化学活性和新的电子功能。这项建议旨在促进两国研究人员在这一具有潜在经济重要性的关键和战略研究领域的流动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Xinliang Feng其他文献
Professor Dr. Xinliang Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Xinliang Feng', 18)}}的其他基金
Explore Synthesis and Structural Determination of Crystalline Supramolecular Polyaniline Thin-Films and 2D Polyanilines Assisted by Electron Diffraction and TEM Imaging
电子衍射和 TEM 成像辅助探索结晶超分子聚苯胺薄膜和二维聚苯胺的合成和结构测定
- 批准号:
426572620 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
MXene–organic semiconductor blends for high-mobility printed organic electronic devices
用于高迁移率印刷有机电子器件的 MXeneâ 有机半导体混合物
- 批准号:
399684426 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Exploration of Heteroaromatic and Antiaromatic Atomically Precise Nanographenes
杂芳族和反芳族原子级精确纳米石墨烯的探索
- 批准号:
391979941 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Elucidating the Formation of 2D Conjugated Metal Organic Frameworks via In-Situ Nanofluidic-Liquid-Cell Transmission Electron Microscopy
通过原位纳流控液体电池透射电子显微镜阐明二维共轭金属有机框架的形成
- 批准号:
492191310 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Magnetic and electronic properties of graphene/MOFene superlattices
石墨烯/MOFene超晶格的磁和电子特性
- 批准号:
443405902 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
近空间飞行器载MIMO SAR高分辨率、宽测绘带遥感成像机理与方法
- 批准号:41101317
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于大机动运动平台的特定目标多极化成像与匹配技术研究
- 批准号:11176022
- 批准年份:2011
- 资助金额:46.0 万元
- 项目类别:联合基金项目
相似海外基金
Synthetic biology approaches to construct metal analogues of vitamin B12 to act as anti-microbial and imaging agents for health applications.
利用合成生物学方法构建维生素 B12 的金属类似物,作为健康应用的抗菌剂和显像剂。
- 批准号:
2881504 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Understanding and rewiring cellular behavior with synthetic biology approaches
用合成生物学方法理解和重新连接细胞行为
- 批准号:
10662938 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Using synthetic virology approaches to elucidate novel virus-host interactions and develop targeted therapeutics
使用合成病毒学方法阐明新型病毒-宿主相互作用并开发靶向治疗方法
- 批准号:
495160 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Targeting Neuromuscular Ageing using Novel Synthetic Retinoids and Chrono-pharmacological Approaches
使用新型合成类维生素A和时间药理学方法对抗神经肌肉衰老
- 批准号:
2888421 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Dissecting protein kinase A regulation of neurons using synthetic approaches
使用合成方法剖析蛋白激酶 A 对神经元的调节
- 批准号:
BB/X008215/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Probabilistic approaches to optimize synthetic organisms
优化合成生物体的概率方法
- 批准号:
RGPIN-2018-05085 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Synthetic Biology Approaches to Selective Amino Acid Modification and Incorporation
选择性氨基酸修饰和掺入的合成生物学方法
- 批准号:
2204014 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Artificial Intelligence-empowered approaches towards the development of combination therapies for HER2+/ER+ breast cancer
人工智能支持的 HER2/ER 乳腺癌联合疗法开发方法
- 批准号:
472362 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Operating Grants
New therapeutic approaches to identifying molecules for opioid abuse treatment
识别阿片类药物滥用分子的新治疗方法
- 批准号:
10385998 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development of novel high-performance fire suppressants via synthetic chemistry and fire-safety engineering approaches
通过合成化学和消防安全工程方法开发新型高性能灭火剂
- 批准号:
22K04614 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)