On the Cohomology of complements of complex reflection arrangements
复反射排列补集的上同调
基本信息
- 批准号:429482547
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The theory of hyperplane arrangements has been a driving force in mathematics over many decades. It naturally lies at the crossroads of algebra, combinatorics, algebraic geometry, representation theory and topology. This proposal in turn lies at the very heart of these subject matters. Deep and remarkable connections have been discovered over the years between the topology of the complement M(A) of an arrangement A, the freeness of the module of derivations D(A) of A and the combinatorics of the intersection lattice L(A) of A consisting of the subspaces arising as intersections of hyperplanes from A.The study of the complement of complex hyperplane arrangements has a long and remarkably rich history. To this day it is a very active field of research. Frequently, questions in hyperplane arrangements relating to reflection arrangements A, where A consists of the reflecting hyperplanes of an underlying reflection group, arose first for symmetric groups, then were extended to the remaining finite Coxeter groups and finally embraced the entire class of complex reflection groups. A prime example of this phenomenon is the question about the topological nature of the complement M(A) of the union of the hyperplanes in the reflection arrangement A which was settled after a development streching more than 50 years by Bessis in 2015.In this research proposal we traverse a similar route concerning questions on the cohomology of the complement of a complex reflection arrangement. In recent joint work with Douglass and Pfeiffer we refined Brieskorn's study of the cohomology of the complement of a Coxeter arrangement A(W). As a result of our study we derive a conjecture due to Felder and Veselov from 2005 on the structure of the W-invariants of the Orlik-Solomon algebra of a finite Coxeter group W.One of the aims of this proposal is to investigate an analogue of the conjecture of Felder and Veselov for the more general case of complex reflection groups.In 1986 Lehrer and Solomon have described the representation of W on the Orlik-Solomon algebra of W as a sum of representations induced from linear characters of centralizers of elements in W when W is a symmetric group. They have conjectured that there is such a decomposition for general Coxeter groups. Indeed a refined version of this conjecture was established in a series of joint papers with Douglass and Pfeiffer for symmetric groups and all irreducible Coxeter groups W up to rank 8. In our second research strand we aim to investigate an analogue of the Lehrer-Solomon Conjecture for the more general class of complex reflection groups.
几十年来,超平面排列理论一直是数学的推动力。它自然地处于代数、组合学、代数几何、表示理论和拓扑学的十字路口。这一建议反过来又处于这些问题的核心。近年来,在排列A的补M(A)的拓扑结构、A的导数模D(A)的自由度以及由A的超平面的相交产生的子空间组成的A的交格L(A)的组合学之间,已经发现了深刻而显著的联系。直到今天,它还是一个非常活跃的研究领域。通常,与反射排列A相关的超平面排列中的问题首先出现在对称群中,然后扩展到剩余的有限Coxeter群,最后包括整个复反射群类。这种现象的一个主要例子是关于反射排列A中超平面并集的补M(A)的拓扑性质的问题,该问题在贝西斯(Bessis)经过50多年的发展后于2015年得到解决。在这个研究计划中,我们穿越一个类似的路线,关于一个复杂反射排列的补上同调的问题。在最近与Douglass和Pfeiffer的合作中,我们改进了Brieskorn对Coxeter排列a (W)的补上同调的研究。作为我们研究的结果,我们从2005年推导出一个关于有限Coxeter群w的ork - solomon代数的w不变量结构的由于Felder和Veselov的猜想。本建议的目的之一是研究Felder和Veselov猜想在更一般的复反射群情况下的类比。1986年,Lehrer和Solomon将W在orliko -Solomon代数上的表示描述为W是对称群时W中元素中心点的线性特征所导出的表示的和。他们推测在一般的考克斯特群体中存在这样的分解。事实上,在与Douglass和Pfeiffer的一系列联合论文中,这个猜想的一个改进版本被建立在对称群和所有不可约的Coxeter群W上,直到秩8。在我们的第二个研究链中,我们的目标是研究更一般类的复杂反射群的Lehrer-Solomon猜想的模拟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Gerhard Röhrle其他文献
Professor Dr. Gerhard Röhrle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Gerhard Röhrle', 18)}}的其他基金
Tutte Polynomials of arrangements of ideal type
理想类型排列的 Tutte 多项式
- 批准号:
286916001 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Computational aspects of the Cohomology of Coxeter arrangements: On Conjectures of Lehrer-Solomon and Felder-Veselov
Coxeter 排列上同调的计算方面:关于 Lehrer-Solomon 和 Felder-Veselov 的猜想
- 批准号:
171336935 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Serre's notion of complete reducibility and geometric invariant theory
塞尔的完全可约性概念和几何不变量理论
- 批准号:
125049979 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Overgroups of distinguished unipotent elements in reductive groups
还原基团中杰出单能元素的超群
- 批准号:
498503969 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Inductive freeness of Ziegler's canonical multiplicity
齐格勒规范多重性的归纳自由
- 批准号:
494889912 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
On hyperfactored and recursively factored arrangements
关于超分解和递归分解安排
- 批准号:
508852336 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Novel pathogenesis of myasthenia gravis: immune checkpoint molecules and complements regulatory molecules and their development into therapy
重症肌无力的新发病机制:免疫检查点分子和补充调节分子及其发展为治疗
- 批准号:
21K07421 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Cross-Disciplinary Study of Peculiar That-Complements: Approaching from Sociolinguistics and Theoretical Linguistics
特殊补充的跨学科研究:从社会语言学和理论语言学入手
- 批准号:
21K00571 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Auction design for complex, interconnected, and fast-paced markets
复杂、相互关联、快节奏市场的拍卖设计
- 批准号:
20K01557 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanism elucidation of M2 macrophages activation via complements and therapeutic application for difficult to treat and neutrophilic asthma
通过补体和治疗应用阐明 M2 巨噬细胞激活难治性和中性粒细胞性哮喘的机制
- 批准号:
20K17235 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
First-party complements in platform markets: a dynamic perspective
平台市场中的第一方补充:动态视角
- 批准号:
430677626 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
A method for evaluating the function of urban farmland as urban green space that complements the city's parks and green space system
城市农田作为城市绿地与城市公园绿地系统互补的功能评价方法
- 批准号:
19K06111 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regulation of IL-18, IL-38 and complements for the treatment of inflammatory pulmonary diseases
调节 IL-18、IL-38 和补体治疗炎症性肺部疾病
- 批准号:
19K08637 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on the Interaction between Predicates and Complements in Modern Japanese
现代日语谓语与补语互动研究
- 批准号:
19K13155 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: University and Corporate Research: Substitutes or Complements?
EAGER:大学和企业研究:替代还是补充?
- 批准号:
1747316 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




