Serre's notion of complete reducibility and geometric invariant theory

塞尔的完全可约性概念和几何不变量理论

基本信息

项目摘要

In this proposed research we intend to further investigate J-P. Serre's notion of G-complete reducibility by means of geometric invariant theory, concentrating on rationality and building theoretic questions. The specific principal objectives are as follows. Firstly, we want to generalize Richardson's algebraic characterization of the closed Gorbits in Gn, the n-fold cartesian product of G with itself, under simultaneous conjugation to the action of an arbitrary reductive subgroup of G on Gn. This in turn will lead to a generalization of Serre's notion of G-complete reducibility. Secondly, we require a suitable concept of optimality by combining Kempf's instability notion with Hesselink's idea of uniform instability. Apart from being of independent interest, this will then be used to address building theoretic questions. In particular, here we pursue a uniform geometric approach towards the so called Center Conjecture due to J. Tits. Further, we will study rationality questions of G-complete reducibility by geometric means, specifically here we will address a general problem posed by Serre concerning the behavior of G-complete reducibility under separable field extensions.
在本研究中,我们打算进一步研究J-P. Serre的概念的G-完全约化的几何不变理论的手段,集中在合理性和建设的理论问题。具体主要目标如下。首先,我们要推广Richardson的代数特征的封闭Gorbits在Gn,的n重carbohydrate产品的G与本身,同时共轭的作用下,G的任意约化子群在Gn上。这反过来又会导致塞尔的G-完全约化概念的推广。其次,我们需要一个合适的概念,结合肯普夫的不稳定性的概念与Hesselink的一致不稳定性的想法。除了是独立的利益,这将被用来解决建筑理论问题。特别是,在这里,我们追求一个统一的几何方法对所谓的中心猜想由于J。此外,我们将研究的合理性问题的G-完全约化的几何手段,特别是在这里,我们将解决一个一般性的问题所提出的塞尔有关的行为G-完全约化下的可分域扩张。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Gerhard Röhrle其他文献

Professor Dr. Gerhard Röhrle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Gerhard Röhrle', 18)}}的其他基金

Tutte Polynomials of arrangements of ideal type
理想类型排列的 Tutte 多项式
  • 批准号:
    286916001
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Computational aspects of the Cohomology of Coxeter arrangements: On Conjectures of Lehrer-Solomon and Felder-Veselov
Coxeter 排列上同调的计算方面:关于 Lehrer-Solomon 和 Felder-Veselov 的猜想
  • 批准号:
    171336935
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Overgroups of distinguished unipotent elements in reductive groups
还原基团中杰出单能元素的超群
  • 批准号:
    498503969
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Inductive freeness of Ziegler's canonical multiplicity
齐格勒规范多重性的归纳自由
  • 批准号:
    494889912
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
On hyperfactored and recursively factored arrangements
关于超分解和递归分解安排
  • 批准号:
    508852336
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
On the Cohomology of complements of complex reflection arrangements
复反射排列补集的上同调
  • 批准号:
    429482547
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Rethinking Japanese Peruvian Immigration Memories through the Notion of the Anthropocene
通过人类世的概念重新思考日本秘鲁移民记忆
  • 批准号:
    23K00468
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing an integrated participatory DRR education model based on the notion of 'Performance'
开发基于“绩效”概念的综合参与式减灾教育模式
  • 批准号:
    23K02776
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Expanding the Notion of a Secure Base- Which Factors Contribute to a Child's Potential for Exploration?
拓展安全基础的概念——哪些因素有助于孩子的探索潜力?
  • 批准号:
    2604689
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Collaborative Research: The Notion of Failure and Maker Programming for Youth: Supporting the Professional Development, Reflection, and Learning of Informal Educators
合作研究:失败的概念和青年创客编程:支持非正式教育工作者的专业发展、反思和学习
  • 批准号:
    2005927
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Rethinking Birth and Maternity as Philosophical Categories: Hannah Arendt's Notion Of Natality In Dialogue With Contemporary Feminist Thought
重新思考出生和母性作为哲学范畴:汉娜·阿伦特的出生概念与当代女权主义思想的对话
  • 批准号:
    2637012
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
New foundations of proof theory from a novel notion of substitution
来自新颖替代概念的证明理论的新基础
  • 批准号:
    2601979
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Collaborative Research: The Notion of Failure and Maker Programming for Youth: Supporting the Professional Development, Reflection, and Learning of Informal Educators
合作研究:失败的概念和青年创客编程:支持非正式教育工作者的专业发展、反思和学习
  • 批准号:
    2005860
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Notion of space based on distributive lattices and its computational content
基于分布格的空间概念及其计算内容
  • 批准号:
    20K14352
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Relations between the Notion of Ecriture and the Theory of Enunciation in Barthes, Blanchot, Derrida
巴特、布朗肖、德里达的书写概念与阐释理论的关系
  • 批准号:
    19K00513
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An alternative overture to the genealogy of the theory of the passions in the medieval ages with a focus on the notion of love and an attempt to reevaluate the passions
对中世纪激情理论谱系的另一种序曲,重点关注爱的概念并试图重新评估激情
  • 批准号:
    19K12969
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了