Fusion of electromyogram and electrical impedance myography for force-torque estimation of human muscle contraction

肌电图和电阻抗肌电图融合用于人体肌肉收缩的力-扭矩估计

基本信息

项目摘要

Robotic devices have been developed to increase the efficiency of rehabilitation therapy and reduce the cost. In order to assess and control the interactive force between the robotic devices and the users in real time, it is of importance to observe the user’s intention of motion. Existing methods to estimate the interactive force-torque are limited. Current measurement technologies for estimation of the interactive human force-torque are electromyography (EMG) and electrical impedance myography (EIM). A fusion of EMG and EIM will benefit from both modalities and hence, should provide a new quantitative assessment tool for muscle activity. It is the goal of this project to develop a robust algorithm for proper estimation of muscle torque and force by combining EMG with EIM. The general idea of combining EMG and bioimpedance measurements has recently been proposed by Schultheis et al. as an automated diagnostic instrument for treating swallowing disorders.The project is set up to combine expert knowledge and experiences from the Russian and the German team. Project objectives include the determination of main biophysical mechanisms of EIM signal formation during muscle contraction, the investigation on optimal electrode configuration and development of a measurement prototype for validation, and the algorithmic fusion of EMG and EIM for precise force/torque estimation. Electrical finite-element modeling and simulation will be considered as a mathematical simulative tool for the investigation of EIM signal formation. A new prototype of the measurement system will be developed with respect to the optimal electrode configuration and measurement setup deriving from experimental and FEM simulation data. An algorithm for the fusion of EMG and EIM will be developed considering model-based or signal-based approaches. The overall test and validation will be performed on healthy volunteers in a motion laboratory and in combination with a mechanical test bench.
机器人设备的发展是为了提高康复治疗的效率和降低成本。为了实时评估和控制机器人设备与用户之间的交互力,观察用户的运动意图是非常重要的。现有的相互作用力-扭矩估计方法存在局限性。目前用于估计人体相互作用力-扭矩的测量技术有肌电图(EMG)和肌电阻抗图(EIM)。肌电图和脑电图的融合将受益于这两种模式,因此,应该为肌肉活动提供一种新的定量评估工具。本项目的目标是通过肌电图和脑电图的结合,开发一种鲁棒的算法来正确估计肌肉的扭矩和力。最近,Schultheis等人提出了将肌电图和生物阻抗测量相结合作为治疗吞咽障碍的自动诊断仪器的总体思路。该项目结合了俄罗斯和德国团队的专家知识和经验。项目目标包括确定肌肉收缩过程中EIM信号形成的主要生物物理机制,研究最佳电极配置并开发用于验证的测量原型,以及将EMG和EIM融合的算法用于精确的力/扭矩估计。电气有限元建模和仿真将被视为研究电磁干扰信号形成的数学仿真工具。根据实验和有限元模拟数据,将开发一种新的测量系统原型,以优化电极配置和测量设置。将考虑基于模型或基于信号的方法,开发一种肌电信号和EIM融合的算法。整体测试和验证将在运动实验室中对健康志愿者进行,并结合机械测试台进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Steffen Leonhardt其他文献

Professor Dr.-Ing. Steffen Leonhardt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Steffen Leonhardt', 18)}}的其他基金

ValidEIT - Validation of regional lung perfusion based on electrical impedance tomography (EIT) by computed tomography (CT) and invasive flow measurement (Swan-Ganz catheter)
ValidEIT - 通过计算机断层扫描 (CT) 和有创流量测量(Swan-Ganz 导管)基于电阻抗断层扫描 (EIT) 验证区域肺灌注
  • 批准号:
    422367304
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Improving hemocompatibility in ventricular assist device therapy using physiological controlstrategies
使用生理控制策略改善心室辅助装置治疗的血液相容性
  • 批准号:
    409796053
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Hybrid parallel compliant actuation for lower limb rehabilitation
用于下肢康复的混合并行顺应驱动
  • 批准号:
    392037132
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Patient-cooperative control of variable impedance actuators (PatRiA)
可变阻抗执行器的患者合作控制 (PatRiA)
  • 批准号:
    359716418
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Systemic Inflammatory Response Indication Observer (SIRIO)
全身炎症反应指示观察仪(SIRIO)
  • 批准号:
    389432072
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multimodal Sensor Fusion and Bio-Signal Processing for Vital Sign Estimation (UNOSECO)
用于生命体征估计的多模态传感器融合和生物信号处理(UNOSECO)
  • 批准号:
    313380423
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Analysis of dynamic system compliance for the therapy of Normal Pressure Hydrocephalus
常压脑积水治疗的动态系统顺应性分析
  • 批准号:
    274362184
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Smart Impedance Controlled Osteotomy Instrumentation
智能阻抗控制截骨术仪器
  • 批准号:
    241205630
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Kontaktlose Überwachung der Lungenfunktion mittels magnetischer Induktion bei Neugeborenen im Inkubator
利用磁感应技术对培养箱中新生儿的肺功能进行非接触式监测
  • 批准号:
    157248750
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modeling and Removal of Physiological Motion Artifacts in Capacitive ECG (PMA-cECG)
电容心电图 (PMA-cECG) 中生理运动伪影的建模和消除
  • 批准号:
    502842902
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Evaluation of swallowing function on age-related changes by analysis using voice function, movement of larynx and the surface electromyogram of the hyoid muscles.
通过声音功能、喉部运动和舌骨肌表面肌电图分析,评估吞咽功能随年龄变化的情况。
  • 批准号:
    21K10655
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robot-assisted Training for Facilitating Prosocial Behaviors of Children with Autism Spectrum Disorders
机器人辅助训练促进自闭症谱系障碍儿童的亲社会行为
  • 批准号:
    20J11008
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Masticatory muscle fatigue observed by muscle function magnetic resonance imaging and electromyogram in jaw deformity patients
肌功能磁共振成像和肌电图观察颌畸形患者咀嚼肌疲劳情况
  • 批准号:
    20K18787
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Surface electromyogram for noninvasive detection of steroid myopathy
用于无创检测类固醇肌病的表面肌电图
  • 批准号:
    20K19340
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A Development of Myocardial Biopsy Forceps with Contact State Estimation Function by Measuring Electromyogram
具有肌电图接触状态估计功能的心肌活检钳的研制
  • 批准号:
    20K08443
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simple evaluation method for muscle morphology and function using ultrasound and electromyogram.
利用超声和肌电图评估肌肉形态和功能的简单方法。
  • 批准号:
    20K12719
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of muscle contraction mechanism by multichannel surface electromyogram based on propagation wave parameter distribution
基于传播波参数分布的多通道表面肌电分析肌肉收缩机制
  • 批准号:
    19K11546
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Three-dimensional gait motion analysis synchronized with electromyogram analysis to elucidate the pathophysiology of low back pain in elderly people
三维步态运动分析与肌电图分析同步阐明老年人腰痛的病理生理学
  • 批准号:
    19K18520
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Effect of Breathing Pattern and Lung Volume on the Diaphragm Electromyogram
呼吸方式和肺容量对膈肌肌电图的影响
  • 批准号:
    538983-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Development of a quantitative identification method for the muscle pain site by mechanomyogram and surface electromyogram.
开发肌力图和表面肌电图定量识别肌肉疼痛部位的方法。
  • 批准号:
    19K11341
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了