Quantum Groups and Functional Relations: A synthesis of methods for integrable systems
量子群和函数关系:可积系统方法的综合
基本信息
- 批准号:429711968
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
We plan to intensify and extend our work on the mathematical structure ofquantum integrable and integrable stochastic systems associated with quantumloop algebras. We will develop methods for solving the spectral problem forthese classes of physical systems and for the exact calculation of theirthermodynamic quantities and correlation functions. The central tool to beused and further developed will be systems of functional equations such asTQ-equations, Q- and Y-systems, inversion relations and various types ofquantum Knizhnik-Zamolodchikov equations for the calculation of form factorsand correlation functions. We shall pay special attention to distinguishuniversal properties, based on the algebra, from physical properties, based onthe representation. The former are supposed to be sufficient for thederivation of the functional equations, the latter become important for thespecific solutions. Emphasis will be put on a generalization of existingfunctional equations to higher rank algebras and to systems associated withquantum loop algebras of series other than the A-type (the B-, C- andD-series). On the side of applications we plan to explore the applicability offunctional equations in the study of integrable stochastic systems.
我们计划加强和扩展我们的工作的数学结构的量子可积和可积随机系统与量子圈代数。我们将发展解决这些物理系统的光谱问题的方法,以及精确计算它们的热力学量和相关函数的方法。中心工具将被使用和进一步发展的系统的功能方程,如TQ方程,Q-和Y-系统,反演关系和各种类型的量子Knizhnik-Zamolodchikov方程计算的形状因子和相关函数。我们将特别注意基于代数、基于物理性质、基于表象的泛在性质。前者对于函数方程的推导是充分的,后者对于特解的求解是重要的。重点将放在推广现有的功能方程,以更高的秩代数和系统与量子回路代数系列以外的A型(B-,C-和D-系列)。在应用方面,我们计划探索函数方程在可积随机系统研究中的适用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Andreas Kluemper其他文献
Professor Dr. Andreas Kluemper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Andreas Kluemper', 18)}}的其他基金
Dynamics in Open Quantum Systems: strong Dissipation and Integrability
开放量子系统中的动力学:强耗散性和可积性
- 批准号:
406226865 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Transport properties of integrable quantum systems
可积量子系统的输运特性
- 批准号:
281488797 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Units
Efficient thermodynamics for strongly correlated fermions and bosons
强相关费米子和玻色子的高效热力学
- 批准号:
281478128 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Units
Integrable Field Theories and Lattice Models: II. Methods and Applications
可积场论和格子模型:方法和应用
- 批准号:
244182214 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Integrable structures in Chalker-Coddington network models for plateau transitions in the quantum Hall effect
量子霍尔效应中平台跃迁的 Chalker-Coddington 网络模型中的可积结构
- 批准号:
188611238 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Implementation of explicit SU(2)-invariance in tensor product states and applications to renormalization group calculations
张量积状态中显式 SU(2) 不变性的实现及其在重正化群计算中的应用
- 批准号:
91564163 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Calculation of thermodynamic properties of quasi-one-dimensional magnetic systems and stripe phase super conductors by use of TMR6
利用TMR6计算准一维磁系统和条状相超导体的热力学性质
- 批准号:
5314778 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
The mechanistic basis of slow-fast phenotypic diversity and its functional and evolutionary significance in social groups
慢-快表型多样性的机制基础及其在社会群体中的功能和进化意义
- 批准号:
2241230 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
- 批准号:
2326788 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Advances in Peptide Synthesis: Exploiting Underutilised Functional Groups
肽合成的进展:利用未充分利用的官能团
- 批准号:
DP230100415 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Development of innovative reactive fluoro resin particles using a small amount of surface functional groups and its hybrid functionalization
使用少量表面官能团开发创新型反应性氟树脂颗粒及其混合官能化
- 批准号:
23K04391 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identifying biological interactions and functional groups that contribute to the resilience of disturbed forests
确定有助于受干扰森林恢复能力的生物相互作用和功能群
- 批准号:
22H03789 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Initiation Strategies From Common Functional Groups in Photocontrolled Polymerizations
光控聚合中常见官能团的引发策略
- 批准号:
2203758 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Catalytic activation of oxygen-containing functional groups
含氧官能团的催化活化
- 批准号:
RGPIN-2020-05065 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Oxidizing Functional Groups: Looking for New Types of Extreme Properties in Main-group Compounds
氧化官能团:寻找主族化合物中新型的极端性质
- 批准号:
RGPIN-2021-03406 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Preparation of anhydrous polymer electrolyte membrane composed of chemically-crosslinked polymer having strongly acidic functional groups
具有强酸性官能团的化学交联聚合物无水聚合物电解质膜的制备
- 批准号:
21K05197 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




