Integrable structures in Chalker-Coddington network models for plateau transitions in the quantum Hall effect
量子霍尔效应中平台跃迁的 Chalker-Coddington 网络模型中的可积结构
基本信息
- 批准号:188611238
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2011
- 资助国家:德国
- 起止时间:2010-12-31 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Low-dimensional quantum systems exhibit surprising properties at so-called quantum critical points as these are driven by quantum fluctuations often in an unintuitive manner. A most prominent example of such a quantum critical behaviour is the plateau transition in the quantum Hall effect originating from the interplay of localized and delocalized states of electrons in two spatial dimensions with disorder potential. This effect comprises the exact quantization of all electronic transport properties and leads for instance to the development of plateaux in the Hall resistivity as a function of the magnetic field. The theoretical understanding of two-dimensional particle systems with disorder is based on mappings to one-dimensional interacting quantum spin chains with super-symmetry or alternatively to super-symmetric two-dimensional network models of Chalker- Coddington type. The research project of this proposal aims at the derivation as well as investigation of such models by use of modern techniques from the field of integrable systems. In particular, exactly solvable cases of Chalker-Coddington network models shall be identified and investigated. The aim is the analytical computation of the critical properties of these systems, i.e. of the critical exponents and the asymptotics of the correlation functions.
低维量子系统在所谓的量子临界点处表现出令人惊讶的特性,因为这些临界点通常以非直观的方式由量子涨落驱动。这种量子临界行为的一个最突出的例子是量子霍尔效应中的平台跃迁,其起源于具有无序势的两个空间维度中电子的定域和离域态的相互作用。这种效应包括所有电子输运性质的精确量化,并导致例如作为磁场函数的霍尔电阻率中的平台的发展。二维无序粒子系统的理论理解是基于映射到具有超对称性的一维相互作用量子自旋链或Chalker-科丁顿型超对称二维网络模型。本项目的研究目的是利用可积系统领域的现代技术来推导和研究此类模型。特别是,Chalker-Coddington网络模型的精确可解情况将被识别和研究。目的是分析计算这些系统的临界特性,即临界指数和相关函数的渐近性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Andreas Kluemper其他文献
Professor Dr. Andreas Kluemper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Andreas Kluemper', 18)}}的其他基金
Dynamics in Open Quantum Systems: strong Dissipation and Integrability
开放量子系统中的动力学:强耗散性和可积性
- 批准号:
406226865 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Transport properties of integrable quantum systems
可积量子系统的输运特性
- 批准号:
281488797 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Units
Efficient thermodynamics for strongly correlated fermions and bosons
强相关费米子和玻色子的高效热力学
- 批准号:
281478128 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Units
Integrable Field Theories and Lattice Models: II. Methods and Applications
可积场论和格子模型:方法和应用
- 批准号:
244182214 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Implementation of explicit SU(2)-invariance in tensor product states and applications to renormalization group calculations
张量积状态中显式 SU(2) 不变性的实现及其在重正化群计算中的应用
- 批准号:
91564163 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Calculation of thermodynamic properties of quasi-one-dimensional magnetic systems and stripe phase super conductors by use of TMR6
利用TMR6计算准一维磁系统和条状相超导体的热力学性质
- 批准号:
5314778 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Priority Programmes
Quantum Groups and Functional Relations: A synthesis of methods for integrable systems
量子群和函数关系:可积系统方法的综合
- 批准号:
429711968 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
- 批准号:60672101
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
新型嘧啶并三环化合物的合成研究
- 批准号:20572032
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
磁层重联区相干结构动力学过程的观测研究
- 批准号:40574067
- 批准年份:2005
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
- 批准号:
2593424 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Studentship
Optimisation of Buildable Structures for 3D Concrete Printing
3D 混凝土打印可建造结构的优化
- 批准号:
DP240101708 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
- 批准号:
2323276 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
- 批准号:
2333630 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
- 批准号:
2330957 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
- 批准号:
2340414 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of an entirely Lagrangian hydro-elastoviscoplastic FSI solver for design of resilient ocean/coastal structures
开发完全拉格朗日水弹粘塑性 FSI 求解器,用于弹性海洋/沿海结构的设计
- 批准号:
24K07680 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




