Electroplasticity Memory Device Using Conducting Polymer and Electrolyte Gel

使用导电聚合物和电解质凝胶的电可塑性存储器件

基本信息

  • 批准号:
    02452251
  • 负责人:
  • 金额:
    $ 3.65万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1990
  • 资助国家:
    日本
  • 起止时间:
    1990 至 1991
  • 项目状态:
    已结题

项目摘要

Conducting polymers of quasi-one-dimensional semiconductor can be reproducibly doped and undoped with oxidizing and reducing agents between polymer chains by electrochemical method and turns into metallic conductor from semiconductor. Using this novel property, the electroplasticity memory devices were fabricated, and the responses by input signals and memory characteristics were investigated.Two types of memory devices with 3-electrode and 2-electrode were fabricated the memory channel was composed with conducting polymer of poly(3-methylthiophene). Microelectrochemical cell was constructed similar to the conventional field effect transistor with solid polymer electrolyte of polyethylene oxide and propylene oxide co-polymer with LiCl04. The poly(3-methylthiophene was synthesized electrochemically between source and drain, on which the solid polymer electrolyte was pasted. For the case of 3-electrode device, the input electrode of Li was pressed on the solid electrolyte.The responses of the channel conductivity by the application of the input signals such as potential sweep and pulse voltage were measured. From the experimental results, the devices operated by the both signals as expected and indicated the memory function with learning effect. It is also found that the channel conductivity depended on the magnitude of pulse voltage and frequency of pulses. The characteristics of these devices can not be achieved by the inorganic semiconductors, are resembled to the synapse plasiticity of neural networks. The improvement of response time, memory characteristics and the construction of a signal process system are the subject of further investigations.
准一维半导体导电聚合物可以通过电化学方法在聚合物链间重复掺杂和不掺杂氧化还原剂,由半导体变成金属导体。利用这一新特性,制备了电塑性存储器件,研究了其对输入信号的响应和存储特性,制备了三电极和两电极两种类型的存储器件,存储沟道由导电聚合物聚3-甲基噻吩构成。类似于常规场效应晶体管,用聚环氧乙烷和环氧丙烷共聚物与LiCl 〇 4的固体聚合物电解质构建微电化学电池。在源漏之间电化学合成了聚3-甲基噻吩,并在其上粘贴了固体聚合物电解质。对于三电极器件,将Li的输入电极压在固体电解质上,测量了通道电导率对电位扫描和脉冲电压等输入信号的响应。从实验结果来看,这两种信号都能使器件正常工作,并显示出具有学习效果的记忆功能。研究还发现,沟道电导率与脉冲电压的大小和脉冲频率有关。这些器件的特性是无机半导体所不能达到的,类似于神经网络的突触可塑性。响应时间、存储特性的改善以及信号处理系统的构建是进一步研究的主题。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
金藤 敬一,浅野 種正,高嶋 授: "Memory device Using a Conducting Polymer and Solid Polymer Electrolyte" Japanese Journal of Applied Physics. 30. L215-L217 (1991)
Keiichi Kaneto、Tanemasa Asano、Takashima 教授:“使用导电聚合物和固体聚合物电解质的存储装置”日本应用物理学杂志 30. L215-L217 (1991)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Kaneto, T. Asano, and W. Takashima: "Memory Device Using a Conducting Polymer and Solid Polymer Electrolyte." Jpn. J. Appl. Phys.30, No. 2Aa. L215-L217 (1991)
K. Kaneto、T. Asano 和 W. Takashima:“使用导电聚合物和固体聚合物电解质的存储器件”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Kaneto: "Application of Conducting Polymers for Memory Devices." Fine Chemical. 21. (1992)
K. Kaneto:“导电聚合物在存储设备中的应用。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
金藤 敬一: "導電性高分子メモリ素子の開発と応用" ファインケミカル. 21. (1992)
Keiichi Kaneto:“导电聚合物存储器件的开发和应用”精细化学21。(1992)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
金藤 敬一,浅野 種正,高嶋 授: "Electorplasticity Memory Devices Using Conducting Polymers and solid Polymer Electrolytes" Polymer International. (1992)
Keiichi Kaneto、Tanemasa Asano、Takashima 教授:“使用导电聚合物和固体聚合物电解质的电可塑性存储器件”Polymer International (1992)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KANETO Keiichi其他文献

KANETO Keiichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KANETO Keiichi', 18)}}的其他基金

Stable Operation and Training Effect in Electrochemomechanical Deformation using Conducting Polymers and Ionic Liquids
导电聚合物和离子液体电化学机械变形的稳定操作和训练效果
  • 批准号:
    21350103
  • 财政年份:
    2009
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of novel functions created at hierarchical nano-interface with conjugated polymers
开发共轭聚合物分层纳米界面的新功能
  • 批准号:
    17067014
  • 财政年份:
    2005
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Research and Developments of Medical Devices using Soft Actuators by Conducting Polymers
使用导电聚合物软执行器的医疗器械的研发
  • 批准号:
    13555095
  • 财政年份:
    2001
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research of Ballistic Conduction at Nano-scale Area
纳米尺度区域弹道传导研究
  • 批准号:
    12305023
  • 财政年份:
    2000
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
FABRICATION OF CHEMOMECHANICAL ACTUATORS USING CONDUCTING POLYMERS.
使用导电聚合物制造化学机械执行器。
  • 批准号:
    07455143
  • 财政年份:
    1995
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Comprehensive Understanding of Charge Transfer Resistance, Affinity, and Electrochemical Stability of the Li/Oxide-Solid-State Electrolyte Interface
全面了解锂/氧化物-固态电解质界面的电荷转移电阻、亲和力和电化学稳定性
  • 批准号:
    22H02178
  • 财政年份:
    2022
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Engineering Nanostructured Solid-State Electrolyte for High Performance All-Solid-State Lithium Batteries
用于高性能全固态锂电池的工程纳米结构固态电解质
  • 批准号:
    569037-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Metal organic framework-based composite solid-state electrolyte for lithium metal batteries
用于锂金属电池的金属有机骨架基复合固态电解质
  • 批准号:
    556344-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Alliance Grants
Engineering Graphene-Confined Alloy Anode and Solid-State Electrolyte for Stable and Safe Lithium-Ion Batteries
工程石墨烯限域合金阳极和固态电解质,用于稳定和安全的锂离子电池
  • 批准号:
    546208-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Postdoctoral Fellowships
Solid-state Electrolyte Membranes for Next Generation Sodium Batteries
用于下一代钠电池的固态电解质膜
  • 批准号:
    543711-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Collaborative Research and Development Grants
Metal organic framework-based composite solid-state electrolyte for lithium metal batteries
用于锂金属电池的金属有机骨架基复合固态电解质
  • 批准号:
    556344-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Alliance Grants
Solid-state Electrolyte Membranes for Next Generation Sodium Batteries
用于下一代钠电池的固态电解质膜
  • 批准号:
    543711-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Collaborative Research and Development Grants
Electrocatalytic Carbon Dioxide Reduction to Concentrated Liquid Products Using Solid-state Electrolyte
使用固态电解质电催化二氧化碳还原为浓缩液体产品
  • 批准号:
    553938-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Engineering Graphene-Confined Alloy Anode and Solid-State Electrolyte for Stable and Safe Lithium-Ion Batteries
工程石墨烯限域合金阳极和固态电解质,用于稳定和安全的锂离子电池
  • 批准号:
    546208-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Postdoctoral Fellowships
Solid-state Electrolyte Membranes for Next Generation Sodium Batteries
用于下一代钠电池的固态电解质膜
  • 批准号:
    543711-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.65万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了